Think you can’t afford robots? Think again. Today’s flexible, high-performance paint robots can quickly pay for themselves through material and labor savings.

A Lemma wrist provides three axes of motion and is well suited for high-speed painting or coating of less complex part shapes in horizontal and vertical planes.


Manufacturers looking to improve painting operations for parts of all sizes and shapes are turning to advanced robotic technology. Modern robots can increase finishing quality, consistency and throughput, while dramatically lowering operating costs and decreasing wasted material and hazardous environments for human workers. Easy to install and program, robots are fast and reliable and can apply the same high-quality finish time after time without tiring. Robotic painting provides an estimated 25 to 30% paint savings over a manual process, offering a quick return on investment (ROI). Paint robots improve safety by reducing the exposure of human workers to paint fumes and other environmental risks, as well as by reducing repetitive motion injuries. Other advantages of robotic painting include less maintenance and cleanup, lower filter/water wash chemical costs and reduced volatile organic compound (VOC) emissions.

Robots can be used for primer, basecoat, finish coat, clearcoat and spray dispensing using water-based, solvent-based, powder, glaze, and glue/adhesive materials. Today’s flexible, high-performance paint robots can efficiently coat intricate parts with recesses, curved and contoured surfaces, and even picture-frame-like shapes. A robot can be programmed to use a complex spray path to apply coating materials to different areas of the part to various film thicknesses - without runs or sags.

A Motoman PX2900 Expert Paint robot (hollow wrist) equipped with an electrostatic bell sprayer paints automotive bumpers. The system sprays up to 25 different colors.

Application-Specific Robots

In addition to traditional paint robots that use external hoses and cabling to feed the paint gun, robot manufacturers now offer application-specific robots designed to optimize finishing operations. These hollow-arm models feature integrated cabling and paint hoses through the upper arm to make programming easier and also improve access into tight spaces that otherwise could not be painted robotically.

Various types of robot wrists are available, and each is designed to facilitate the painting of specific types of parts. The three main wrist types are:
  • Three-roll wrist - provides three axes of motion (roll, bend, twist, or RBT axes) in a compact wrist assembly. A three-roll wrist is well suited for painting complex contours, such as car body interiors and the insides of box-shaped objects and other enclosures.
  • Lemma wrist - also provides three axes of motion but has slightly less flexibility to maneuver in tight spots. A Lemma wrist is well suited for high-speed painting or coating of less complex part shapes in horizontal and vertical planes, such as a frame or the outside of a cabinet.
  • Hollow wrist - has the same type of movement as a three-roll wrist but includes a large opening through the robot base, arm and wrist for hoses, cables and the direct connection of various spray application devices to the robot wrist. With a hollow wrist, interference between the hoses and parts/fixtures is avoided, ensuring optimum cycle time and robot reach/access. Programming also is simplified without hose interference worries. However, hollow wrists cost approximately 10 to 15% more than nonhollow models.
Some robot manufacturers offer a variety of fully integrated spray gun options for these different wrist types, including traditional air spray guns, electrostatic guns and high-speed bell applicators, as well as powder coating applicators.

A Motoman PX1850 Expert Paint robot (Lemma wrist) is used to paint automotive trim parts.

Common Options for Paint Robots

Paint robots often are equipped with closed-loop fluid control, such as flushable gear pumps or air operated pressure regulators (AOPRs) with flow meters. Closed-loop fluid control guarantees the amount of fluid dispensed, which affects paint quality and film thickness. With a manual application, the worker adjusts the path used to paint a part to accommodate changes in viscosity, etc. However, a robot is blind, so closed-loop fluid control is critical to monitor the actual paint fluid delivery output.

Most robot manufacturers offer a built-in (external axis) servo motor that can be used to drive the flushable gear pumps. This type of servo motor option is managed by the robot controller, which provides better control of fluid delivery, as well as the capability to control paint operations through the robot teach pendant.

Color change valves (a type of air pilot valve) often are used when painting multiple colors. Mounted on the upper arm of the robot, these valves allow automatic color changes in as little as 15 to 30 seconds.

Solenoid valves also can be mounted on the upper arms of some of the larger, floor-mounted painting robots to provide a faster response time for color change or fluid delivery control. Solenoid valves convert electrical signals from the PLC or robot to air pilot (pneumatic) signals.

Some applications use disposable paint robot covers to protect the manipulator from material overspray and allow easier cleanup. Some paint robots now include a Teflon® coating inside and outside the hollow upper arm casting and wrist to reduce hose wear and maintenance.

Special Controllers

Robots are ideal for liquid painting operations where fumes might be hazardous to human workers. Generally, robots used for liquid painting operations are required to have a Factory Mutual (FM) Class 1, Division 1 intrinsically safe (explosion-proof) rating. To reduce the risk of explosion, air purge is used to pressurize the robot positively and keep flammable vapors away from the electrical motors. Powder coatings usually are not flammable like liquid coatings; however, the intrinsically safe paint robots and controllers might still be required in some cases due to the explosion risk of powder coating materials.

Some advanced controllers for paint robots feature programming pendants with built-in menus specific to painting that include functions such as gun on/gun off, color change, and paint condition files that control the fluid, fan air, atomizing air, electrostatic high voltage, bell speed and shaping air. (Shaping air is used to control the size of the pattern created by the painting bell as it spins. More shaping air provides a narrower paint pattern, while less shaping air provides a wider paint pattern.)

Vision Systems

Vision systems are becoming more affordable and are being used more often in painting applications or closely related tasks. For example, one automotive supplier uses a laser in conjunction with high-end cameras to inspect automotive body panels prior to painting operations to detect dings or other flaws. To determine defects, the vision system matches the laser scan and camera images of the auto body panel with a computer model and confirms that the part is within tolerance. Another manufacturer that runs more than 70 different part families uses bar code readers and vision systems to read part tags and automatically tell their painting robots which spray pattern program to run. If no bar code read is detected, the robot uses a “generic” program that will cover most parts. The results are dramatic - material savings alone can easily pay for a robot system in just a few short months, depending on product volumes and system complexity. The manufacturer in the bar code reader example achieved payback in only seven months.

Advanced PC-Based Software

When planning a robotic painting system, finishing operations can use PC-based simulation to select the robot model and wrist type, and optimize cell layout by determining the best placement of the robot(s) in relation to conveyors and spray booth walls to eliminate potential interference. Users then can simulate part and conveyor movements, as well as the actual spray process, to determine the best coating pattern that delivers the required finish with the least waste of materials and fastest throughput time.

Simulation programs allow manufacturers to develop robot programs offline on a PC and download them directly to the robot. This capability reduces or eliminates the downtime required for point-to-point robot programming.

A Motoman PX2850 Expert Paint robot (three-roll wrist) applies a primer and topcoat to aircraft landing gear components.

New Approaches

New robot designs are starting to change paint lines in automotive exterior paint applications. Manipulator arms are narrower and feature hollow wrists, providing better part access. Previously, paint robots were nearly always floor-mounted, which created a limited working area due to interference between the robot, applicator and car body coming down the line. Newer paint robots can be shelf- or overhead-mounted, which offers significant advantages by expanding the effective work envelope and decreasing potential interference. One automotive company has been able to reduce the width of its paint booth by 25%, from approximately 20 to 15 ft (6,000 to 4,500 mm).

Overhead robot layouts reduce floorspace requirements, thereby providing additional cost savings. Overhead mounting configurations also provide less contamination from paint overspray onto the robots and base risers, which decreases maintenance requirements.

Growth Markets

Automotive companies and suppliers were early users of paint robots, and they continue to take advantage of today’s more flexible robots to minimize floorspace on paint lines. Use of robotic painting has expanded to Tier 1 automotive suppliers, as well as to general industry. Aircraft manufacturers also are turning to paint robots to provide the kind of high-quality finishes needed on large components. With advanced controls and increased flexibility, modern paint robots are easy to cost-justify for virtually any application.


For more information, call 937.847.6200 or visit Motoman's website at www.motoman.com.

SIDEBAR: Special Applications: Powder Coatings and Plastic Parts

Due to the powder application process, it is not unusual for the robot speed to be significantly slower for powder than for liquid coatings. High-volume robot powder applicators should be considered to reduce the cycle time or number of robots required.

When robots are used to paint plastic parts, sometimes another robot is used to pretreat the parts with a plasma or flame treatment, which changes the molecular structure of the plastic and enhances adhesion between the paint and the parts. In some cases, flame treating also is used in lieu of traditional water-based (aqueous) part cleaning systems.