The Dirt Pick-Up Resistance Battle

Coatings Trends & Technologies

Terri John- Synthomer Technical Service Manager

- 1. Definition
- 2. Factors Affecting DPUR
- 3. Test Methods
- 4. Accelerated Testing Data
- 5. Exterior Exposure Data
- 6. Summary

The Dirt Pick-Up Resistance Battle Dirt Pick-Up Resistance

What is Dirt Pick-Up Resistance?

Dirt pick-up resistance (DPUR) is a coating's ability to resist discoloration due to the deposition of particles from the environment.

Why is Dirt Pick-Up Resistance important?

- → Aesthetics- Dirty buildings are not very attractive
- → Potential Energy savings
- Coatings which are white in color and cleaner reflect the sun better and can assist in keeping a building cooler
- → Cost Containment Saves money and time on cleaning and repainting
- Some types of building stains or discoloration are only cosmetic, while others may indicate growths that could reduce coating service life such as on siding, or trim.

The Dirt Pick-Up Resistance Battle Factors Affecting Dirt Pick-Up Resistance

DPUR Performance

The Dirt Pick-Up Resistance Battle Why is Better Dirt Pick-Up Resistance Needed?

→ Growth in the development of "softer" elastomeric wall and roof coatings

- In urban or industrial areas airborne dust is a persistent problem.
- Continued construction of high-rise commercial buildings creating the need for coatings that are easier to clean and maintain.
- In existing high-rise building exterior maintenance and cleaning represent the highest cost.

→ Market demand for low-VOC formulations

- Usually resulting in tackier coatings with worse dirt pick-up resistance
- Environmental regulations throughout the U.S.
- Third party certifications such as Green Seal

Improved dirt pick-up resistance will extend the paint service life

The Dirt Pick-Up Resistance Battle
Accumulation of Dirt

The accumulation of dirt on a surface can be broken down into three events:

Deposition of Dirt

- Adhesion and Entrenchment
- Shedding and Release²

The Dirt Pick-Up Resistance Battle Approaches to Winning the Battle Against Dirt

- → Highly crosslinked polymers which could result in a low-tack surface
- \rightarrow High T_g polymers
- → Multi-staged polymers
- A mixture of polymers with different T_g ranges, resulting in a mix of hard and soft segments.
- Increasing the pigment volume concentration (PVC) thus creating a harder surface
- → Photo-catalytic degradation agents
- Emerged as a promising alternative for degradation of many organic pollutants
- Caveat can potentially degrade the latex as well.
- → Hydrophobic coating technology
- Water beads more readily, maintains a higher surface tension and keeps the water from plasticizing the film.

Test Methods

Accelerated Testing
 Exterior Exposure

The Dirt Pick-Up Resistance Battle How is Dirt Pick-Up Resistance Measured?

→ Accelerated Testing

 Accelerated testing involves applying dirt standards (such as iron oxide slurries, carbon black slurries, or dry dirt particulate) to a coated panel. The panel is then evaluated for color change after the dirt is removed by washing, tapping, or wiping.

→ Examples

- UNI 10792- dry charts for 28 days, dip into black iron oxide solution, rinse, let dry 24 hours, measure Delta L (Δ L)
- Chinese standard GB/T 9780-2013- Test method for dirt pick-up resistance and stain removal of film of architectural coatings and paint; fibre cement panels, local dirt
- ASTM method is under development- the preliminary study used a brown iron oxide slurry on aluminum panels

→ Exterior Exposure

- Measure color before putting panels outside.
- Typical procedure is to place the panels on a South-facing test fence at a 45° angle.
- Measure color periodically.

The Dirt Pick-Up Resistance Battle Accelerated Testing- Internal Method

- → The paints were drawn down using a 20-mil film applicator onto black Leneta panels and cured for 7 days at room temperature.
- → Each of the panels was checked for CIE L*a*b* values to set a baseline for paint whiteness, at which point iron oxide powder was poured onto the panels (below, left) and allowed to let stand for 1 hour at room temperature.
- The iron oxide powder was rinsed from the panels under flowing water for approximately 30 seconds, and the panels (below, right) allowed to dry for 3 days at room temperature.
- → Each panel was re-tested for CIE L*a*b* values and the results compared to the initial lightness vales.

Left: Dirt pick-up panels with iron oxide powder applied

Right: Panels after rinsing. Commercial examples on top (Commercial Paints) and Synthomer on bottom. (L to R: 073A-073F)

The Dirt Pick-Up Resistance Battle Dirt Pick-Up: Results and Analysis

- \rightarrow L* values of the paints were tested, with Δ L showing the change in L* from prior to dirt application to final reading.
- → The best performer was Latex 2. All SC (Self-Crosslinking) latexes performed well.

Formula	Latex	Chemistry	Latex MFFT (C)	ΔL^{\star}
18-100-073A	Latex 4	PA, SC	4	5.79
18-100-073B	Latex 5	PA	17	5.41
18-100-073C	Latex 3	PA	4	12.55
18-100-073D	Latex 6	PA, SC	5	5.90
18-100-073E	Latex 2	PA, SC	8	4.13
18-100-073F	Latex 3-3	PA Core-shell	0	21.85
Commercial Paint B	n/a	N/A	N/A	21.12
Commercial Paint C	n/a	N/A	N/A	8.55
Commercial Paint D	n/a	N/A	N/A	27.94

The Dirt Pick-Up Resistance Battle

Accelerated Testing-Alternate Internal Method

→ Test Method

- Application of the paint at 12-mils wet film thickness
- Drying protocol : 1 day at room temperature, 5 days of UV-B exposure, 1 day at room temperature
- Application of a carbon black pigment on half of the panel with a brush
- Removal of the pigment rubbing vigorously with a white tissue, until trace of black pigment has disappeared from the tissue
- Measurement of color difference between soiled and un-soiled parts

The Dirt Pick-Up Resistance Battle Benchmarking Study

Latex Features

Reference of latex	Origin	Chemical nature of the binder	T _g (°C) (Technical Data Sheet)	T _g (°C) (Measured – Onset)
# 1	Competition	Acylic	-25	-19.6
# 2	Competition	Acrylic	-28	-21.7
# 3	Competition	Acrylic	-28	-25.4
# 4	Internal	Acrylic	-25	-18.7
# 5	Internal	Acrylic	-24	-20.1
Latex B	Internal	Pure Acrylic – LEB	-22	-20.2

Binders with similar T_g levels were selected among market references

The Dirt Pick-Up Resistance Battle **Results**

Paint FPS316 based on Latex B exhibits very good dirt pick-up resistance

The Dirt Pick-Up Resistance Battle

FPS 316 - Experimental formulation for Elastomeric Wall Coating

	Raw Materials	%
	Water	11.15
Latex B		30.00
Cellulosic thickener		0.15
Buffer		0.20
Dispersing agent		0.50
Defoamer		0.30
Titanium dioxide		11.30
Calcium carbonate 1	1	7.50
Calcium carbonate 2	2	15.0
Talc		6.60
Latex B		9.60
	Water	3.30
Coalescing solvent		3.00
Defoamer		0.20
Associative thickener	1	0.50
Associative thickener	2	0.20
Paint film preservative	е	0.50

Weight Solid (%)	61.6
Volume Solid (%)	46.3
PVC (%)	42.7
PVC / CPVC	0.70
Specific Gravity	1.41
MFFT (°C)	0°C

Matte vs. Semi-Gloss

The Dirt Pick-Up Resistance Battle Dirt Pick-Up Resistance Testing per SYN Method

- Purpose: To evaluate the ability of the surface of horizontal coatings to repel the build up of dirt on the surface that may cause a change in appearance and/or color of the coating
- → The coating is drawn down at 20-mils wet using a Bird bar on a Leneta Chart
- → The coatings were allowed to dry for 7 days prior to testing at room temperature
- > Color readings were taken of the coated surface using a Delta Tools Spectrometer and the L, a, and b values were recorded
- > A layer of dry black iron oxide pigment is applied in a thin layer on the coating and allowed to sit on the surface for 1 hour
- At the end of the hour, the chart is placed under a stream of water from the faucet to wash the pigment off of the surface.
 The chart is then left to dry for 24 hours
- → Once dried, color readings are again taken at the spot where the pigment was left to sit. Delta E (Δ E) is then calculated using the original and post pigment/dirt exposure to describe the color change. Photos were also taken.

The Dirt Pick-Up Resistance Battle Dirt Pick-Up Resistance – Matte Finish

Product	ΔE
Commercial B	16.7
Latex 5	19.9
Latex 1	8.1

The Dirt Pick-Up Resistance Battle Washability after DPUR per SYN Method

- Purpose: To evaluate the ability of the surface of horizontal coatings to repel the build up of dirt on the surface that may cause a change in appearance and/or color of the coating
- A wet sponge is used to attempt to clean off any loose residue from the surface of the panel after the final reading is taken
- > The sponge is applied with light pressure to the surface to wipe away any "dirt" that can be easily removed
- \rightarrow The panel is then left to dry for 24 hours
- → Once dried, the color readings are again taken, and a Delta E (△E) is calculated based on the initial values of the clean coating before the test was begun

The Dirt Pick-Up Resistance Battle Washability After DPUR Testing – Matte Finish

Product	$\Delta \mathbf{E}$
Commercial B	6.9
Latex 5	4.6
Latex 1	1.1

The Dirt Pick-Up Resistance Battle Dirt Pick-Up Resistance – Semi-Gloss Finish

Latex 1	Latex 5
A State State	

Product	ΔΕ
Latex 1	18.9
Latex 5	14.3

The Dirt Pick-Up Resistance Battle Washability After DPUR Testing – Semi-Gloss Finish

Product	ΔΕ
Latex 1	2.7
Latex 5	1.5

The Dirt Pick-Up Resistance Battle Matte vs. Semi-Gloss Finish

Test	Finish	Latex in Coating	ΔΕ
DPUR	Matte	Latex 1	8.1
DPUR	Semi-Gloss	Latex 1	18.9
DPUR	Matte	Latex 5	19.9
DPUR	Semi-Gloss	Latex 5	14.3

Test	Finish	Latex in Coating	ΔΕ
Washability	Matte	Latex 1	1.1
Washability	Semi-Gloss	Latex 1	2.7
Washability	Matte	Latex 5	4.6
Washability	Semi-Gloss	Latex 5	1.5

Test Methods

2. Exterior Exposure

The Dirt Pick-Up Resistance Battle Roof Coatings; 24 Months Exposure, Horizontal, in Duplicate

Boards 15 and 16

The Dirt Pick-Up Resistance Battle Roof Coatings; 48 Months Exposure, Horizontal, in Duplicate

Boards 15 and 16

The Dirt Pick-Up Resistance Battle Roof Coatings; 24 Months Exposure, Vertical, in Duplicate

Boards 17 and 18

The Dirt Pick-Up Resistance Battle Roof Coatings; 48 Months Exposure, Vertical, in Duplicate

Boards 17 and 18 were vertical

The Dirt Pick-Up Resistance Battle Comparison Data - Coatings Based on RF2 Latex

Exposure Time	Position	$\Delta {f E}$
2 years	Horizontal	6.2
2 years	Vertical	5.8
4 years	Horizontal	5.3
4 years	Vertical	5.1

The Dirt Pick-Up Resistance Battle Summary

- There are several different methods used for determining dirt pick-up resistance.
- The self cross-linking latexes exhibit better dirt pick-up resistance in this accelerated testing study.
- → Semi-gloss coatings typically have better dirt pick-up resistance, but as seen in this report, that is not always the case.
- → It is very important to always include a control, and test multiple coatings at the same time.
- → Latex 2 exhibited excellent dirt pick-up resistance in accelerated testing.
- → Latex RF2 had excellent dirt pick-up resistance after 4 years of exterior exposure. The position of the panels did not affect the ΔE .

The Dirt Pick-Up Resistance Battle **References**

1,2 Towards a Comprehensive Understanding of Dirt Pickup Resistance: Architectural Coatings — https://www.paint.org/coatingstech-magazine/topics/technologies/architecturalcoatings/

The Dirt Pick-Up Resistance Battle Contact Information

Terri John Technical Service Manager, Coatings Tel: +1(330)794-6309 Email: <u>terri.john@synthomer.com</u> Address: 2990 Gilchrist Road, Akron, OH 44305

synthomer