

Paints and Coatings If I can make it there . . . I'll make it anywhere! Inks Plastics Cleaners Adhesives **Personal Care**

Surfactants

Paints and Coatings

Why Paint?

Coating Technology The Scientific Balance Surfactants

Why Paint?

Decorative Functional dentification Miscellaneous Anti-Smudge Anti-Fog Sanitation

Paints and Coatings

Why Paint?

Coating Technology The Scientific Balance Surfactants

Coating Technology Film Former Liquid Pigment Additives Pigment

Liquid

Coating Technology Film Former Tree Sap, Egg Yolk, Vegetable Oils **Polymers and Resins** Alkyd, Acrylic, Urethane, Epoxy, Polyester, PVA, Silicone, Polyaspartic, Nitrocellulose, VAE, Hydrocarbon Resins, SBR, Oleoresinous, PVB, Fluro Polymers, Versatate, PVDC Liquid

Aliphatic, Aromatic, Oxygenated, Water

Coating Technology **Pigments/Fillers** Inorganic TiO₂, Carbon Black, Metal Oxides Calcium Carbonate, Silica, Kaolin Clay, Mica, Talc Organic Monoazo, Diazo, Diarylide, Naphthol, Phthalo, Quinacridone, Perylene Effect

Metallic, Pearl, Fluorescent

Coating lechnology

Additives

Surface Active Agents Wetting, Dispersing, Flow/Leveling, Emulsification, Foam Control **Rheological Additives** Newtonian, Shear Thinning, Shear Thickening, Thixotropy Matting Agents Silicas, Organic Waxes Fischer-Tropsch, Polyethylene, Polypropylene, Natural

Coating Technology

Additives

Biocides Coalescents UVLA, HALS **Photoinitiators Corrosion Inhibitors** Driers, Anti-Skinning Agents Crosslinkers, Catalysts, Plasticizers

Coating Technology **Other Considerations** End Use Architectural, Industrial, Performance Substates Metal, Wood, Concrete, Plastic, Gypsum Application Brush, Roller, Spray, Dip, Curtain, Flow, Powder Curing Air Dry, Bake, Radiation

Coating Technology **Other Considerations Surface Preparation** Environment Packaging **Testing Methods** Resistance, Gloss, Adhesion, Stain Blocking, Tensile, Modulus, Elongation, Flow and Leveling, Water Permeability, Hiding Power, Color Acceptance, Open Time, Drying, MVTR, Tg, MFFT, pH, VOC, etc.

Coating Technology **Other Considerations Surface Preparation** Environment Packaging **Testing Methods** Resistance, Gloss, Adhesion, Stain Blocking, Tensile, Modulus, Elongation, Flow and Leveling, Water Permeability, Hiding Power, Color Acceptance, Open Time, Drying, MVTR, Tg, MFFT, pH, VOC, etc.

Coating Technology **Stain Resistance Block/Print Resistance** Scrub Resistance Crack Resistance **Chemical Resistance Corrosion Resistance Dirt Pickup Resistance**

Physics

Chemistry

Mathematics

School

Industry

Empirical Application Experience

Industry

Balance

Chemistry Physics Mathematics Theory Mechanism Concepts Art

School

Why?

Industry What?

Paints and Coatings Why Paint? Coating Technology

The Scientific Balance

Surfactants

Surfactants

Surfactants

Surfactants

Paints and Coatings Why Paint? Coating Technology

The Scientific Balance

Surfactants

Any substance which will significantly reduce the surface tension of a liquid at a very low concentration.

Any substance which will significantly reduce the surface tension of a liquid at a very low concentration.

Surfactants

Paints and Coatings Why Paint? Coating Technology

The Scientific Balance

Surfactants

Paints and Coatings Why Paint? Coating Technology The Scientific Balance Surfactants Chemistry, Surface Tension, Wetting Micelles, Surface Pressure, Surface Transport Foam Control, Pigment Dispersion

Paints and Coatings Why Paint? Coating Technology The Scientific Balance Surfactants Chemistry, Surface Tension, Wetting Micelles, Surface Pressure, Surface Transport Foam Control, Pigment Dispersion

Chemistry

R

CH₂

Chemistry

CH₂
Chemistry

Chemistry

Intermolecular Forces Van der Waals London Dispersion Induced-Dipole **Dipole-Dipole** Hydrogen Bonding

Charge Magnitude Distance/Atomic Radius Electronegativity Difference

Intermolecular Forces Van der Waals

London Dispersion Induced-Dipole **Dipole-Dipole** Hydrogen Bonding Charge Magnitude **Distance/Atomic Radius** Electronegativity Difference

Intermolecular Forces Van der Waals London Dispersion Induced-Dipole **Dipole-Dipole**

Hydrogen Bonding Charge Magnitude Distance/Atomic Radius Electronegativity Difference

Intermolecular Forces

_x41 kJ/Mole

Van der Waals Induced-Dipole **Dipole-Dipole**

London Dispersion Hydrogen Bonding Charge Magnitude **Distance/Atomic Radius Electronegativity Difference**

Surface Tension

Surface Tension

Molecules at the surface possess a net attractive force into the bulk.

Surface Tension

Wetting Contact Angles

Micelles

Paints and Coatings

Why Paint? Coating Technology The Scientific Balance Surfactants Chemistry, Surface Tension, Wetting Micelles, Surface Pressure, Surface Transport

Foam Control, Pigment Dispersion

Surface Pressure

Surface Pressure

Surface Transport

Surface Transport

Surface Transport Contaminant --> Film Defects Oil Drop Dirt Particle Finger Print

Surface Transport Contaminant Oil Drop Dirt Particle Finger Print

Foam Stabilization

Foam Stabilization

Foam Control

Pigment Dispersion Wetting Separation Stabilization

Pigment Dispersion Wetting Separation Stabilization Young's Equation $Y_{LG} < \overline{Y}_{SG}$ Washburn Equation $V = \frac{r}{21 \eta} \cdot Y \cos \theta$

Pigment Dispersion

Wetting Separation Stabilization

Pigment Dispersion Wetting Separation Stabilization

Pigment DispersionWettingSeparation $V = \begin{pmatrix} Preden \end{pmatrix} g \uparrow r^2 2/9 \\ \eta \end{pmatrix}$ Stabilization

Pigment DispersionWettingSeparation $V = \begin{pmatrix} P_{medur} \end{pmatrix} g \uparrow r^2 2/9 \\ \eta \end{pmatrix}$ Stabilization

Pigment DispersionWettingSeparation $v = \frac{v + v + v}{r}$ Stabilization

Pigment Dispersion Wetting Separation Stabilization **Electric Double Layer**

Pigment Dispersion Wetting Separation Stabilization **Electric Double Layer**

Zeta Potential ζ

Pigment Dispersion Wetting Repulsive Separation Interaction Energy **Stabilization Electric Double Layer**

DLVO Theory

Attractive

Electrostatic Repulsion

Resultant Energy

Van der Waals Attraction

W_{vdw}

Distance Between Particles

 $-AR_1R_2$ 6D (R1 + R2)

Pigment Dispersion Wetting Separation **Stabilization** Viscosity **Electric Double Layer DLVO** Theory **Depletion Flocculation**

Dispersant Concentration

Pigment Dispersion Wetting Separation Stabilization Osmotic Pressure **Electric Double Layer DLVO** Theory **Depletion Flocculation**

Pigment Dispersion Wetting Separation Stabilization Osmotic Pressure **Electric Double Layer DLVO** Theory **Depletion Flocculation**

Osmotic Pressure

Paints and Coatings Why Paint? Coating Technology The Scientific Balance Surfactants Chemistry, Surface Tension, Wetting Micelles, Surface Pressure, Surface Transport Foam Control, Pigment Dispersion

Paints and Coatings Why Paint? Coating Technology The Scientific Balance

Surfactants

The Scientific Balance

Those who Know . . . but don't Do . . . Don't Know

Know

School

Why?

Industry

What?

Do

Contact

914.273.0300

Sam.Morell@samMorell.com linkedin.com/in/sammorell in

youtube.com/c/SamMorell

Contact

Sam Morell

LinkedIn

YouTube