

Novel High Performance Waterborne Oil-modified Urethane for Wood Flooring and Furniture Applications

Pengxu Qi, Ph.D. Group Leader, R&D Application Testing Polynt Composites USA Inc. Email: pengxu.qi@polynt.com

Polynt Group

A Glance at the Polynt Group

37 plants in the world

2,390 mrd € turnover in 2023

3.036 employees

786 kton volume sale in 2023

we are a specialty polymers & intermediates company and innovation is out mission

Find out more

Polynt Group

 \leftrightarrow

INTERMEDIATES 🖂

COATINGS

OUR SUSTAINABILITY APPROACH

Polynt Group is committed to making the future more sustainable.

Benefit of Urethanes

Structural Element	Chemical	Weathering	Flexibility	Hardness	Abrasion	Heat	Water
Aliphatic hydrocarbon chains	Good	Excellent	Good	Good	Good	Good	V. Good
Aromatic hydrocarbon chains	Excellent	Poor	Fair	Excellent	Excellent	V. Good	Excellent
Alkoxy groups	Fair	Good	Excellent	Poor	Good	Poor	Poor
Ester linkages	Poor	Good	Excellent	Fair	Good	Poor	Good
Urea linkages	Good	Poor	Poor	Excellent	Fair	Good	Good
Urethane linkages	Good	Good	Good	Good	Excellent	Good	Good
Allophanate groups	Fair	Excellent	Fair	Good	Good	Fair	Good
Amide linkages	Fair	Poor	Good	Good	Good	Fair	Fair
Linearity	Good	V. Good	Excellent	Fair	Fair	Poor	Depends
Low molecular weight	Poor	Poor	Fair	Fair	Good	Poor	Poor
High molecular weight	Good	Good	Good	Good	Good	Fair	V. Good
High crosslink density	Excellent	Fair	Poor	Excellent	V. Good	V. Good	Good

Polynt Group

Uniqueness of Urethanes

Stress

Stress

toughness

strong and tough

strong, not tough

- Toughness
 - Soft but not tacky
 - Hard but not brittle
 - Mechanical properties
 - o Abrasion resistance
- Segmentation

Stress

Polynt Group

Solventborne vs Waterborne

- Solvent-borne systems
 - High VOC >275 g/L
 - Cost effective
 - High hydrolytic stability
 - Fewer coats needed
 - High gloss values
- Waterborne systems
 - Low VOC <275 g/L
 - Fast-property development
 - High molecular weight
 - Excellent wear resistance
 - Little to no odor
 - Easy clean-up with water

VOC Regulation Map, Clear Varnish, North America 2024

Conventional vs Oil-modified

R'"'3 N 4

Water NMP

- Conventional PUDs:
 - Thermoplastic
 - Crosslinkable with external crosslinkers
 - Water-white finish
 - Excellent abrasion resistance
- Oil-modified PUDs:
 - Thermoset
 - Oxidative cure (self-crosslinking)
 - Yellow to amber finish
 - Inherent black heel mark (Mar) resistance
 - Excellent chemical resistance
 - Bio-renewable

Challenges of Wood Protection

Return to Service

Contraction & Expansion

Scratch Marks

Exposure to Chemicals

Indentation

Abrasion and Wear

Aromatic vs Aliphatic OMUs

	Dry Times	Property Development	Film Hardness	Chemical Resistance	Mechanical Properties	Wear Resistance
Aromatic OMUs	~	\checkmark	\checkmark	×	×	×
Aliphatic OMUs	×	*	×	\checkmark	\checkmark	\checkmark
Target	✓	✓	✓	\checkmark	✓	\checkmark
NMP Free	D Bio	o-based 🔰	250 g/L V	OC Compliant	🖅 Wa	ter Clean-up

Fast Property Development

Tack Free	Aliphatic OMU Benchmark 1	Aliphatic OMU Benchmark 2	Novel Aliphatic OMU	Aromatic OMU Benchmark 1	Aromatic OMU Benchmark 2
200 g (Hr:Min)	1:37	1:15	0:51	0:48	0:49
500 g (Hr:Min)	2:16	1:35	0:55	0:54	0:58

Physical Property Development

- Aliphatic OMU Benchmark 2
 - Novel Aliphatic OMU
- Aromatic OMU Benchmark 1
- Aromatic OMU Benchmark 2

Thumbnail Gouge Test, 0-5, 5 = full development

Novel Aliphatic OMU matches the fast property development of aromatic OMUs

Balance: Hardness & Flexibility

	Aliphatic OMU Benchmark 1	Aliphatic OMU Benchmark 2	Novel Aliphatic OMU	Aromatic OMU Benchmark 1	Aromatic OMU Benchmark 2
Mandrel Bend, 1/8"	Pass	Pass	Pass	Fail	Pass
Impact Resistance (Ibf*inch): Forward/Reverse	160/160	160/160	160/160	15/0	15/0

 $\Delta \Delta$ Novel Aliphatic OMU achieves perfect balance between hardness and flexibility

Excellent Chemical Resistance

Chemical Resistance (26 Household Chemicals tested)

Aliphatic OMU Benchmark 1

Aliphatic OMU Benchmark 2

Novel Aliphatic OMU

Aromatic OMU Benchmark 1

Aromatic OMU Benchmark 2

Superior Wear & Mar Resistance Coatings Trends & Technologies

	Taber Abrasion Resistance (mg loss/1000 cycle)	Mar Resistance Development (hours)	Contraction of
Aliphatic OMU Benchmark 1	63	24	
Aliphatic OMU Benchmark 2	70	24	
Novel Aliphatic OMU	56	24	Mar All
Aromatic OMU Benchmark 1	147	72	
Aromatic OMU Benchmark 2	113	24	

Novel Aliphatic OMU exhibits superior wear and mar resistance

Rheology and Flatting Study

Rheology Modifier Study

Polynt Group

----Rheology Modifier 1 ----Rheology Modifier 2

Flatting Agent Study

Novel Aliphatic OMU can be easily formulated

Summary

Sustainability

Superior Performance

- Aliphatic OMU Benchmark 1
- – Aliphatic OMU Benchmark 2
- Novel Aliphatic OMU
- Aromatic OMU Benchmark 1
- *Aromatic OMU Benchmark 2*

Primary Applications

Acknowledgements

The innovative minds behind today's scene

- Scott Cooley
- Dawei Qiu
- Mahesh Chaudhari

ۺۘػٞٵ

Thank you for today's opportunity

Coatings Trends & Technologies Committee

Takk!谢谢!Grazie!Děkujeme!Dank!

Gracias!

Obrigado!

Danke! Merci!

धन्यवाद !