

AI - Where it Can (and Can't) Give You a Competitive Edge in R&D

Thursday, September 05, 2024

Presented by

Noel Hollingsworth | CEO & Co-Founder | Uncountable

Agenda

01 | Introduction

02 | The Current Landscape: AI in R&D
03 | Considerations Before Implementing AI
04 | AI Modeling
05 | Best Practices: Start Creating The Proper Infrastructure
06 | The Benefits of an All-in-One Data Infrastructure
07 | Q&A

Featured Speaker: Noel Hollingsworth

Noel Hollingsworth is Co-Founder and CEO at Uncountable. In his role, he works closely with Uncountable's customers to implement next-generation data management systems.

Prior to his work at Uncountable, Noel led data teams at startups and was awarded Forbes 30 under 30 for his work with machine learning and artificial intelligence.

CEO & Co-Founder Noel Hollingsworth

About Uncountable

Founded in 2016

with offices in San Francisco, New York City, and Munich

100+ Customers Across Industries

R&D organizations including: paints & coatings, cosmetics & personal care, advanced materials, food & beverage, biotechnology & life sciences

One-of-a-Kind Platform

that centralizes R&D data and helps reduce new product development timelines

Proven Domain Expertise

Began as a data science company helping Fortune 500 materials companies accelerate development of new projects.

Uncountable Proudly Supports Clients That Span Across a Variety of Industries

01 | Introduction

02 | Overview: Al in R&D

03 | Considerations Before Implementing AI
04 | AI Modeling
05 | Best Practices: Start Creating The Proper Infrastructure
06 | The Benefits of an All-in-One Data Infrastructure
07 | Q&A

AI Today: What Is Causing All The Hype?

• Deep Learning

- Large neural networks, taking advantage of large datasets to make predictions
- Demonstrated revolutionary success in areas like image recognition and fraud detection in 2010s

• Generative Al

- Popularized by ChatGPT in 2022
- Capable of responding to text queries, summarizing data, creating images in "intelligent" manner
- Tech Companies Rushing to Take Advantage of This
 - 1 Trillion in CapEx over coming years

But Also Doubts?

Goldman | Global Macro Sachs | Research

ISSUE 129 | June 25, 2024 | 5:10 PM EDT

TOP*of* **Gen AI: Too Much Spend, Too Little Benefit?**

02 | Overview; Al in R&D

What Characterizes These New Models?

Characterization	Fit for R&D?
Huge Data Sources Needed	If we can simulate experimental process - yes, otherwise no
Large Amount of Compute Required to Train	Yes
Black Box Explanations	It depends
Results are not "Perfect"	Yes
Results Reflect Dataset	Yes, but it's a limitation

What Does This Imply?

- There will be places where these methods are revolutionary!
 - Large amounts of pre-existing data
 - Places where we can run simulations or do extremely high throughput testing
 - Adjacent areas to experimentation, where we can collect data and learn insights
- They are not a fit today for many scientific workflows
 - Small data available
 - Simulation not possible
 - Want reasonable explanations for model behavior

Where Do We Go From Here?

3 Quotes from Peter Norvig (Google Research Director)

"We don't have better algorithms. We have more data."

"More data beats clever algorithms, but better data beats more data."

"Simple models and a lot of data trump more elaborate models based on fewer data."

Where do we go from here?

- Get more data
- Make sure data is "better"
- Apply the right models to that data
- Understand that coatings R&D has inherent challenges:
 - Could prevent an "AI revolution" taking place in an area with more data (e.g., drug discovery)

01 | Introduction

02 | Overview: Al in R&D

03 | Considerations Before Implementing AI

04 | Al Modeling

05 | Best Practices: Start Creating The Proper Infrastructure

06 | The Benefits of an All-in-One Data Infrastructure

07 | Q&A

The Core Issue in R&D Orgs: Decentralized, Unstructured, & Fragmented Data

Data is collected & sits independently across the different teams and systems used throughout the entire R&D value chain...

							Fai	tors						
Runs	2	3	4	5	6	7	8	9	10	11	12	13	- 14	15
4	Full													
8		Full	N		1.0									
16			Put	V	N.	N	N	1		1	1			1.1
32				Full	M.	N.	N	R.	N	N	N	N	w	N.
64					Full	V8	Y	IV.	N	N	N	N	N.	N.
128						Tut.	NW.	M	× .	× .	N	N	16	N.
actors 2-7	Ru 12 12 20	ns ,20,24 ,20,24 ,24,28	Avail 1,28, 1,28, 1,36,	.48 .48 .48	F	actors 20-23 24-27 28-31	1 Pia 2 2 3	uns 4,28,3 8,32,3 2,36,4	12,35,. 16,40,-	48 (4,48 (8	ingers	Factor 36-3 40-4 44-4	18 9 3 7	Runs 40,44,4 44,48 48
8-11		24.21	1,32	.48		32-35	3	6,40,4	14,48					

H	dome Insert Draw P	age Layout	Formulas	Data I	Review V	lew ⊽⊺e	i me					28 Share	Comm	ent
	Calleri (Body) Peete of B I ⊻ v	•[# • ⊞ • •	. А° А А • <u>А</u> •			General \$ * %	• % 4	Car S For S Car	ditional Permat mat as Table + i Styles +	ting - 198 198	Delete + Format +	O * DRing	dean -	
	A .	0	c	D	6	£	G	н					м	
	PISTRUCTIONS					1								
	NAME	0/2.9725		Dig. \$790		Dep. 5834		Dip. 5829		Dip. 9852		Do. 9887		0
		Pets	Satch Weight	Pets	Setch Weight	Perto	Betch Weight	Perts	Betch Weight	Ports	Betch Weight	Parts	Batch Weight	Ð
	Polymer A	23	21	3 34	3	4	0		6 1		1	1 3	5 2	s
	Polymer 8	25	3	5 25					4 2		e 1	P	<u>x</u>	<u>8</u>
	Earlos Back C	0							5 25		3 3	u 3	4 8	<u>.</u>
	Carson anack 0	20					· ·					0	0	
	Piacost						<u> </u>							÷
	Processing and			< .			<				•	•	•	•
	Calcium Online 1													
	Eller													
	Fo Asset												1	÷
	and the second sec												-	-

Types of Data Systems: R&D Organizations

ELN/Lab Journals

LIMS

Inventory

Visualizations / Analysis

Statistical Tools

Predictive tools

03 | Considerations Before Implementing AI

Data Systems: Structured vs. Unstructured

Unstructured

Examples

- Spreadsheets
- Word Documents
- PDFs
- Lab Journals/ELNs
- SharePoint/Shared Drive

Advantages

- Free
- Unrestricted entry of information
- Known/second nature "habitual"

Disadvantages

- Limited scope & scalability for application of info
- Ctrl+F keyword searching
- Limited collaboration
- Inability to innovate efficiently & at market-rate

Structured

Examples

- Databases
- LIMS
- Inventory Systems
- Uncountable

Advantages

- Instant access to specific information/data
- Shareable & scalable information
- Intelligent insights & reporting

Disadvantages

- Requires intentional/deliberate entry of information
- Change management
- Migration of historical data into new system
- Disciplined use

Top 3 Problems: Deploying AI Without Structured Data

- Why Excel & Unstructured Data System Are Insufficient
 - 1. Volume of Data
 - A small data set with the best AI model in the world is worse than both expert scientists and simpler AI models applied to "big data"
 - The most important aspect of any AI model is its underlying data both size and cleanliness
 - 2. Relevancy to Problems
 - Will create desire to squeeze square peg in round hole When we do have some data, we must apply Al, even if it's not a fit
 - Al is not a fit for all use cases!
 - 3. Scientist Trust
 - Desire to be AI-first company without gathering appropriate data = scientist trust being lost
 - Al ends up being applied to projects that aren't good fits, or only to high priority projects that carry substantial failure risk when there are issues, team loses faith in the process
 - Sufficient Data is important, but not the only prerequisite

Importance of Structuring Lab Data for AI: Example of Brookfield Viscosity

- Standard Way Data Gets Recorded In Spreadsheets & Notebooks:
 - Viscosity, 7D = 3000
 - Brookfield Visc. Sp #4 = 5500
 - BV, ON = 1800

• Best Practices for Structuring Lab Data for AI:

- Brookfield Viscosity = 5000
 - Liquid Aging Time + Temperature: 7D at 23°C
 - Spindle #4
 - RPM: 150
 - Test Temperature: °23
 - Exact temperature and time
 - Machine SN, Operator

01 | Introduction

02 | Overview: Al in R&D

03 | Considerations Before Implementing AI

04 | AI Modeling

05 | Best Practices: Start Creating The Proper Infrastructure
06 | The Benefits of an All-in-One Data Infrastructure
07 | Q&A

How Do We Select The Right Models To Use?

- Can we just pick the one with the best performance on our test set?
 - It's not that easy!

Example: Gradient Boosted Trees

- Often has best performance predicting results
- Decisions made by answering:
 - "Yes" "No" Questions & Summing Results
- Imagine this applied to a viscosity prediction
 - If water < 50%: Viscosity is 100 cps
 - If 52% > water > 50% > Viscosity is 110 cps
- Even if results are good...
 - Does not reflect reality
 - Produces downstream issues

Ensemble Model: example for regression

Example: Exploitation vs. Exploration

- Once you have a model, you have to decide which points to test
- We could test the point our model thinks will perform best
 - What if this is just a copy of our previous best result
 - Incidentally, what does "perform best" mean?
- We could test the point that gives us the most new information
 - What if this is something completely impractical to formulate?
- Balancing between the two is a key goal in the field of Bayesian Optimization
 - In our case, often done with many different physical, cost and regulatory constraints
- Selecting a data point is significantly more difficult than predicting its performance

So, What Do We Do?

- Don't just assume that good model performance = Good suggestions of experiments to run
- Performance on a toy example does not reflect performance on your data
- If you implement AI with a partner, emphasize:
 - Is AI something they deeply understand or a trend they are chasing?
 - Anyone can hire someone to be their "AI expert" Was the company built with AI in mind, or was it added because of where we are in the hype cycle?
 - Are they trying to sell you on AI for all use cases, or just where it's a fit?
 - Are they demanding you spend large amounts of money on nebulous AI projects before seeing results, or do they work with you to take it step by step?

01 | Introduction

02 | Overview: Al in R&D

03 | Considerations Before Implementing AI

04 | Understanding The Resources & Constraints for AI

05 | Best Practices: Start Creating The Proper Infrastructure

06 | The Benefits of an All-in-One Data Infrastructure

07 | Q&A

Considerations: Setting The Right Expectations

• Too big of a search space

- 100s of ingredients, but limited data points
 - Either from collection, cleanliness, or standardization

Moonshot objectives

- What are you trying to achieve in this project vs long term goals
- What are more reasonable targets that would allow you to claim "progress"

• Perception of perfection

- Why would model suggest such a thing?
- Why isn't model more accurate?
- Can it model pictures of exposure ratings?

How to Define & Create an AI Roadmap

1. Before (Preparation)

- Ensure structured data system in place
- Verify all scientist work is being captured in a way fit for AI
 - All data points and all aspects of data
 - Example: Viscosity centipoise, temperature, spindle, rpm...
- Utilize in-house expertise to understand/validate vendor and partner "claims"

2. During (Deployment)

- Identify appropriate targets for AI Example Criteria:
 - Large Amounts of Data
 - Known Success Criteria
 - Consistent Output Results
- Ensure AI is embedded into daily workflows
 - Not judged off success in a project where majority of results are out of scientists control

3. After (Maintenance)

- Identify areas where data capture is insufficient
- Deploy systems and/or recurring procedures to collect data

01 | Introduction

02 | Overview: Al in R&D

03 | Considerations Before Implementing AI

04 | Al Modeling

05 | Best Practices: Start Creating The Proper Infrastructure

06 | The Benefits of an All-in-One Data Infrastructure

07 | Q&A

Uncountable's All-In-One Platform?

A Platform to Centralize, Connect, And Structure All Types Of R&D Data.

New Modern Digitalization Tools: R&D Labs in Paints & Coatings

• Drive learnings from the raw material level to improve performance

• Better understanding of the correlation between the data specific to raw materials and the desired results for formulas

• Integration with raw materials/costs systems

• Enable world where scientists don't have to go to multiple systems to formulate with context

• Unified Laboratory Informatics Platforms

- End-to-end web-based systems connecting recipes to results
- Data is collected in standardized, streamlined, consistent way

• AI/ML-powered DOE approach to efficiently explore the defined formulation space

• Enabling acceleration towards sustainability goals

Example 1 Platform-Wide Data

06 | The Benefits of an All-in-One Structured Data System

Example 1: Output Fits

Training Accuracy

Plot	Name		Summary Stat (Training Da	istics ita)	Model Predictions				
101	Nume	# Samples	Mean µ	Std. Dev. σ	RMSE	r² Score	Explained Error % ()		
d	Output 1	1360	172	145	54.4	0.86	62.6%		
d	Output 2	319	8.17	10.3	3.39	0.891	67.1%		
d	Output 3	254	16.4	7.38	5.03	0.533	31.8%		
d)	Output 4	541	65.2	71.4	17.7	0.939	75.2%		
dl	Output 5	359	8.02	5.4	2.96	0.698	45.1%		
4	Output 6	397	41.6	31.9	8.23	0.933	74.2%		
d I	Output 7	1511	7520	12200	6070	0.752	50.2%		
I	Output 8	251	3.51	1.7	0.818	0.767	51.8%		
d	Output 9	895	7.25	4.03	2.12	0.725	47.6%		
1	Output 10	1475	8.26	6.71	2.9	0.813	56.8%		
al I	0.4	1497	0.00279	0.00112	0.000767	0.533	31.7%		

Predicted Output 1

Example 1: Linear Coefficients

Effect Sizes ()

Show linear coefficient approximations

lype Name	ti Outputs Outp	out 1 (Output 2	Output 3	Output 4	Output 5	Output 6	Output 7	Output 8	Output 9	Output 10	Output 11	Output 12
redient 1									-0.753			-1.51	0.000365
gredient 2									0.231			-0.0274	0.000324
aredient 3		10.8							0.0461			0.153	0.000214
siedient 5		27.1		1.32	3	14.7			-1.59		-6.86	-0.872	-0.000199
redient 4		-1.76		-0.05	71		-0.223	0.233	0.229	-0.615	12.3	-0.781	-0.000187
redient 5		4.98							3.21		-11.7	0.199	-0.000177
redient 6		3.48							0.0483			0.18	0.00017
redient /				-0.15	7				-0.445	0.487	-3.6	0.233	0.000106
redient 8		-25.7		-1.13	4	.96	15.5	-3.46	2.95	20.8		-5.88	-0.0000996
redient 9											-1.35	-0.603	-0.0000943
redient 10		8.02		7.32	1	1.2		5.34	-1.12	5.63		-10.7	0.0000875
redient 11	-26.3	0.0219									-0.762	0.0724	0.0000671
redient 12		5.72							-0.0281		-5.8	0.206	-0.0000477
redient 13		3.5							-0.0947		-4.96	0.387	0.0000437
redient 14		1.38		0.070	08 0	793	-0.437	0.422	-0.0411	-0.893	4.04	-0.259	-0.000042
redient 15		1.92						0.0139	0.192		-7.79	0.0894	0.0000417
redient 16													
redient 17	2.2-1-2.4) +	-1.83			-	0.064				0.0867	3.92	-0.158	0.0000402
redient 18									39.5			0.171	0.0000366
redient 19	rsion	-25.1		0.002	- 226	.12	-1.95	0.0962	-1.25	-1.54	3.47	7.37	0.0000344
redient 20	-25.3	0.224							0.0311		-0.561	0.0222	0.0000326
redient 21		2.99							-0.276		-4.03	-0.0774	-0.0000317
redient 22									0.193	0.183	6.13	0.373	-0.0000294
redient 23		2.38									-2.82	0.335	0.0000285
redient 24		0.168									-3.07	-0.0553	-0.0000255
redient 25		1.73							-0.0281		-1.21	0.263	0.0000246
redient 26		-0.915		0.020)3 -).41	-0.114	0.12	-0.0618	-0.687	-0.673	-0.38	-0.0000236
redient 27		1.49							0.438		-3.2	0.526	0.0000232

06 | The Benefits of an All-in-One Structured Data System

Example 2 Targeted Experiments

06 | The Benefits of an All-in-One Structured Data System

Example 2: Suggested Experiments

Suggested Formulations

Recipe Name		Recipe 1	Recipe 2	Recipe 3	Recipe 4	Recipe 5	Recipe 6
Import Recipe?							
ngredient 1	= 2.5 🎢	2.5	2.5	2.5	2.5	2.5	2.5
ngredient 2	= 0.202 🖉	0.2021	0.2021	0.2021	0.2021	0.2021	0.2021
ngredient 3	= 0.0121 🥒	0.01209	0.01209	0.01209	0.01209	0.01209	0.01209
ngredient 4	[6.52, 10.2]		9.709	10.11	8.072	8.411	9.5
ngredient 5	[10.3, 25] 🖉	22.71	22.71	17.27	18	18.62	18.69
ngredient 6	[4.78, 10]	0.050	0.110		0.017	0.007	
ngredient 7		9.658	8.146		6.247	6.307	
gredient 8	[5.84, 10.1]	6.138	6.347	6.328	6.235	5.906	5.877
gredient 9	[5.2, 50] 🖉	27.86	39.03	32.46	30.69	46.62	49.81
gredient 10	[5.1, 14.3] 🥒	10.26	11.35	9.108	10.64	11.42	13.41
gredient 11	[14.8, 32] 🖉	20.67		22	17.4		
		100	100	100	100	100	100
alculation 1	[2, 4]	2.25	3.83	2.09	2.39	2.98	2.78
alculation 2	[0.8, 1.2]	0.804	1.11	1.02	1.08	1.13	1.08
alculation 3		3.16	3.87	2.89	3.21	3.01	2.81
alculation 4		1.91	9.82	0.595	3.04	6.36	5.41
	Goal						
redicted Output 1	≥ 300	221 ± 111	236 ± 111	224 ± 109	216 ± 107	210 ± 108	215 ± 109
redicted Output 2	≥ 5	7.5 ± 2.75	5.82 ± 3.11	7.71 ± 2.88	7.39 ± 2.84	5.71 ± 3.08	5.94 ± 3.11
radistad Output 2	≤ 4000	2100 ± 1390	1860 ± 1630	2140 ± 1580	2050 ± 1460	1810 ± 1760	1900 ± 1840
redicted Output 3	≥ 2	2.5 ± 1.07	2.68 ± 1.15	1.94 ± 1.12	2.56 ± 1.07	2.46 ± 1.1	3.85 ± 1.18

01 | Introduction

02 | Overview: Al in R&D

03 | Considerations Before Implementing AI

04 | Al Modeling

05 | Best Practices: Start Creating The Proper Infrastructure

06 | The Benefits of an All-in-One Data Infrastructure

07 | Q&A

Just a few of many Uncountable Long-Term Customers

Thank You!

Questions?

Email: <u>info@uncountable.com</u> Inquiries: <u>www.uncountable.com/contact-us</u>

www.uncountable.com

Want a Demo?

Scan The QR Code

