

Eliminating VOC emissions in your manufacturing process and much more, with UV coatings technology

THE TRANSITION

MARKETPLACE

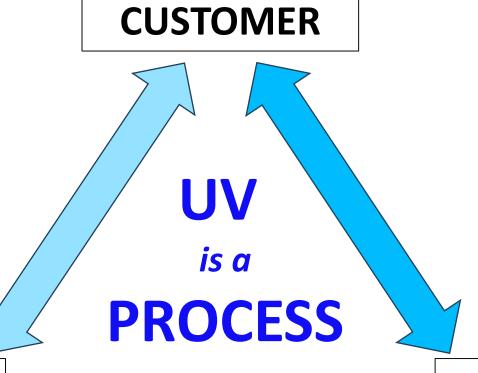
TODAY'S MARKETPLACE REALITIES:

- Very competitive marketplace
- Customer requirements / needs are increasing "Sustainability....."
- Re-shore manufacturing back to NA
- Single-type coating operation can cause bottlenecks / inefficiencies
 - Example: Existing powder operation Can be complimented with UV
- US Manufacturing needs a competitive edge

MARKETPLACE

MANUFACTURER'S GOALS:

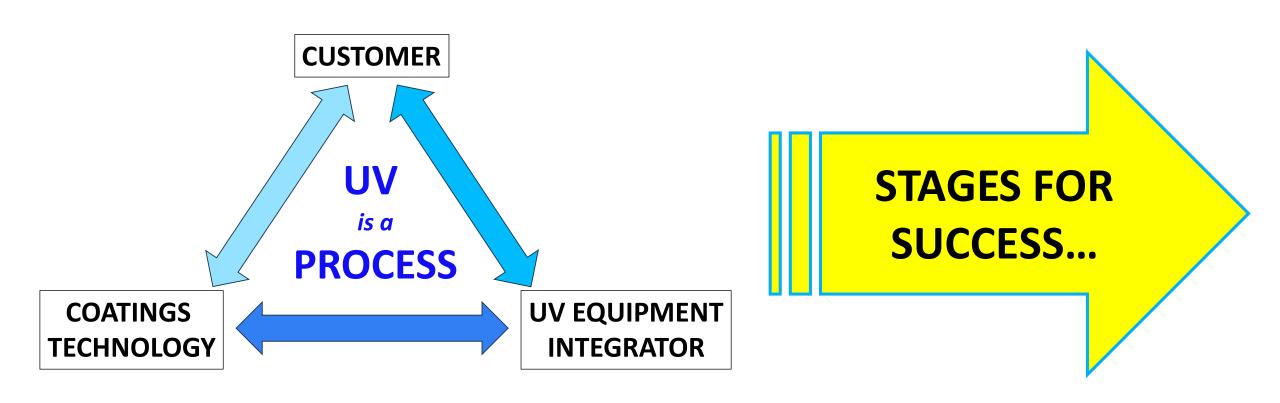
- Driving process efficiencies
- Manufacturing an improved product Exceeding Customer's Needs
- Focus on Workplace Safety EH&S
- Improving your Sustainability Footprint "BEING GREEN"
- Delivering improved ROI Return on Investment


CURRENT CURRENT SCENARIO

CUSTOMERS CURRENT COATING OPERATION:

- Current Supplier: "Are they looking out for my best interest?"
- In reality, legacy coating suppliers are complacent
 - Making money & profit off your back because "they have your business!"
- Minimal incentive to be proactive
- Time and time again, we witness this....
- UV Ultraviolet Coatings Technologies offer unique advantages LET ME EXPLAIN

UV IS A PROCESS



COATINGS TECHNOLOGY UV EQUIPMENT INTEGRATOR

UV IS A PROCESS

GOAL: START EARLY / DIALOG / ALLIED IS THE CATALYST:

UV IS A PROCESS - EXECUTION IS KEY

INITIAL PROJECT ENGAGEMENT:

PRE-PRODUCTION STAGES: 1-7

POST-PRODUCTION STAGES: 8-14

UV IS A PROCESS - EXECUTION IS KEY

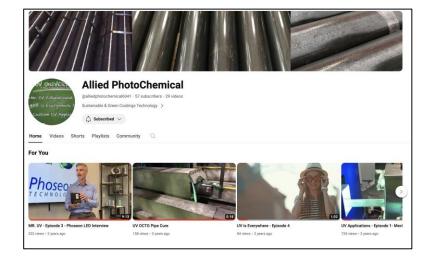
STAGES 1 – 7: PRE-PRODUCTION STAGES:

- 1. EDUCATION is KEY **UV**University Web-Site / YouTube / Linkedin / Etc.
- 2. UV is a PROCESS END CUSTOMER, UV Systems Int. and UV Tech Company
- 3. Understanding your Process Specifications / Needs
- 4. Product Specifications / Requirements Corrosion / Adhesion / Thickness / Etc.
- 5. ROI & VOC reduction Discussion Must make economic / environmental sense
- 6. QUALIFIED UV SYSTEMS INTEGRATORS Partners
- 7. BEST PRACTICES DEFINED Customer & UV Integrator

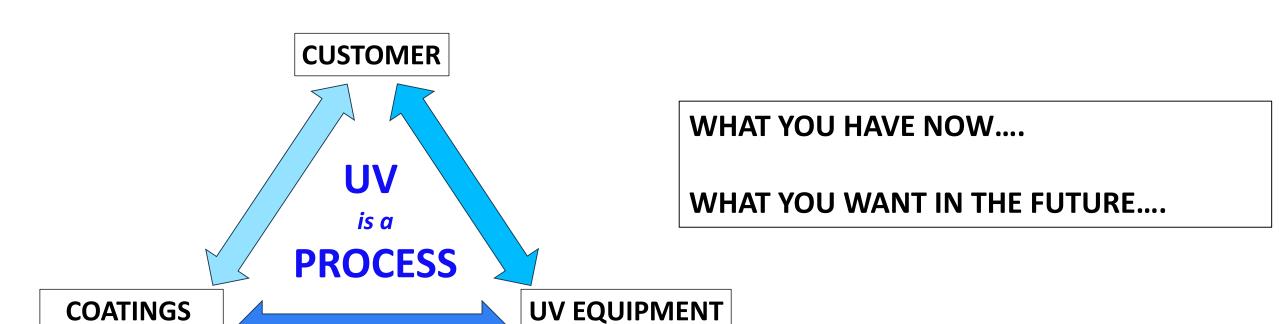
UV IS A PROCESS - EXECUTION IS KEY

STAGES 8 – 14: POST-PRODUCTION STAGES:

- 8. Quality Certification Procedures DEFINED / Customer Specific
- 9. PPE Personal Protection Equipment recommendations
- 10. EHS Safety Training / On-site / Multi-Shift
- 11. On-site Start-Up Assistance UV Systems Integrator / UV Lights / Allied UV
- 12. Maintaining your UV System
- 13. Monitoring the ROI / Cost Savings / Overall benefits of UV
- 14. On-Going Service & Support Continue EHS / Customer AUDITS & REPORTS



STAGE 1 – UV UNIVERSITY – EDUCATION:



STAGE 2 – UV IS A PROCESS:

TECHNOLOGY

INTEGRATOR

STAGE 3 – UNDERSTANDING PROCESS / DISCUSSION:

KEY PROCESS CRITERIA:

- ✓ LINE SPEED
- ✓ SUBSTRATE DIMENSIONS
- ✓ SUBSTRATE CONDITION BEFORE COATING
- ✓ PRE-HEAT REQUIREMENTS
- ✓ VOC EMISSIONS
- ✓ ETC...

STAGE 4 – PRODUCT SPECIFICATION:

KEY PRODUCT SPECIFICATIONS:

- ✓ COATING THICKNESS
- ✓ CORROSION TESTING
- ✓ ADHESION
- ✓ GLOSS
- ✓ ETC....

CLEARLY DEFINED – COMPARATIVE TESTING AGAINST CURRENT COATING SOLUTION

ALLIED PHOTOCHEMICAL APPLICATIONS REQUIREMENTS						
Customer Name:	TBD		WORK ORDER:	Т	TBD	
Method:	Roll Coat		Coating Technology:	ı	JV	
Line Speed:	TBD		UV Light Type:	Hereaus Bulbs		
IR:	TBD		Thermal:	Т	BD	
	CUSTOMER	SPEC	IFICATION REQUIREMENTS			
Specification	ASTM Standard	Y/N	Requirement	Source	Result	
Coating Thickness	ASTM D4138		TBD	TBD		
Adhesion	ASTM 3359-17		5B	TBD		
Solvent Resistance	ASTM D1308		Acetone >TBD Double Rubs MEK >TBD Double Rubs	TBD		
Impact Resistance	ASTM D2794		80 lbs	TBD		
Aqueous Immersion	ASTM D870		TBD	TBD		
Flexibility Test	ASTM F 1683-02		TBD	TBD		
Hardness - Pencil Scratch Hardness	ASTM 3363-05		TBD	TBD		
Chip Resistance	ASTM D3170		TBD	TBD		
Abrasion Wear Resistance	ASTM D4060		TBD	TBD		
Accelerated Aging	Two week - 120F		TBD	TBD		
Salt Fog	ASTM B-117		TBD	TBD		
Humidity	ASTM D2247		TBD	TBD		
UV Resistance	ASTM G155-05 Cycle 1		TBD	TBD		
Outdoor Exposure	Actual Test		TBD	TBD		
Gloss	ASTM D523/D2457		TBD	TBD		
Cold Impact Resistance	ASTM D2444-99		TBD	TBD		
Flammabilty	ASTM D5025 / 5027		TBD	TBD		
Weldabilty	NO ASTM		TBD	TBD		

STAGE 4 – PRODUCT SPECIFICATIONS CONTINUED:

DEFINING YOUR NEEDS

Description	ASTM Std.	Specifics	Customer Comments
Salt Fog	ASTM B117	Greater than 500 hours / Less than 5% red rust	Needs significant improvement
Humidity	ASTM D2247	Greater than 1000 hours / Less than 5% red rust	This is the main cause with Rust
Impact Resistance	ASTM D2794	Greater than 160 in-lbs	Improved handling / load & unload protection
Adhesion	ASTM B3359 - 17	5B	Improved adhesion
UV Resistance	ASTM G155-05	Greater than 1000 Hours / No blistering	Improved outdoor storage for End- Customer

Description	ASTM Std.	Water-based	UV	Specifics
Salt Fog	ASTM B117	24 Hours	>505 Hours	Greater than 500 hours / Less than 5% red rust
Humidity	ASTM D2247	240 Hours	>1073 Hours	Greater than 1000 hours / Less than 5% red rust
Impact Resistance	ASTM D2794	Pass	Pass	Greater than 160 in-lbs
Adhesion	ASTM B3359 - 17	4B	5B	5B
UV Resistance	ASTM G155-05	650 Hours	>1000 Hours	Greater than 1000 Hours / No blistering

STAGE 5 – ROI DISCUSSION:

Direction	ns for Use:		
		Entered Data	Measurement
Enter in Outside Diameter of Tube:		9.625	Inches Diameter
Target Coating Thickness:		1.0	Mils Thick
Cost of Water-Based / Gallon:		\$ 26.60	Dollars
Percent Solids of Water-Based		28%	Percentage
Water-based coating percent efficiency		70%	Percentage
Cost of UV Coating / Gallon:		\$ 67.90	Dollars
UV coating percent efficiency		96%	Percentage
FUNCTIONAL PIP	E COATING MODEL		
Linear Foot Comparison:	9.625	Inches Diameter	
Target Coating Thickness	1.0	MilsThick	
Description	Water-based	UV	
Coating cost per gallon	\$ 26.60	\$ 67.90	
Percent Solids	28%	100%	
Percent Water	72%	0%	
Percent Efficiency	70%	96%	
Coverage at 1 mil - Square Feet	314	1,540	
Coverage at 1 mil - Square Inches	45,271	221,737	
Diameter of Pipe (inches)	30.24	30.24	
Linear inches per gallon	1,497	7,333	
Linear feet per gallon @ 1 mils thick	125	611	
Linear feet per gallon @ specified coating thickness	125	611	
Cost per linear foot coated specificed inch diameter pipe	\$ 0.2132	\$ 0.1111	

COMPLETE ROI ANALYSIS

- ✓ COATING COST / FOOT
- ✓ VOC'S
- ✓ ENERGY COSTS
- ✓ FLOOR SPACE
- ✓ INCREASED SPEED
- ✓ CLEAN UP COSTS
- ✓ QUALITY COSTS
- ✓ AND MORE.....

STAGE 5 – ROI DISCUSSION – EXAMPLE:

CURRENT OFFERING:

- Current Water-based offering: \$26.60 per gallon
- 28% solids (or in reality, coating AND 72% water and solvent)

UV COATING:

- UV Coating: \$67.90 per gallon
- 100% solids (or in reality, <u>all coating</u> No water, solvent or fillers)

COST ANALYSIS:

- Analyze 9.625 inch diameter pipe at 1.0 mils thick

STAGE 5 – ROI DISCUSSION: WATER-BASED V'S UV

WATER-BASED COATING

WATER-BASED COATING

~28% **SOLIDS**

UV COATING

UV COATING - 100% SOLIDS

100% SOLIDS

WFT 4.0 to 5.0 MILS ~ 4.0 MILS EVAPORATES
INTO THE AIR – SOLVENT /
& WATER

NO EVAPORATION

DFT 1.0 MILS

WFT 1.0 MILS

DFT 1.0 MILS

Directions for Use:

	Entered Data	Measurement
Enter in Outside Diameter of Tube:	9.625	hches Diameter
Target Coating Thickness:	1.0	Mils Thick
Cost of Water-Based / Gallon:	\$ 26.60	Dollars
Percent Solids of Water-Based	28%	Percentage
Water-based coating percent efficiency	70%	Percentage
Cost of UV Coating / Gallon:	\$ 67.90	Dollars
UV coating percent efficiency	96%	Percentage

FUNCTIONAL PIPE COATING MODEL

Linear Foot Comparison:	9.625	Inches Diameter
Target Coating Thickness	1.0	Mils Thick

Description		Water-based	UV
	_		

Description	water-based	UV
Coating cost per gallon	\$ 26.60	\$ 67.90
Percent Solids	28%	100%
Percent Water	72%	0%
Percent Efficiency	70%	96%
Coverage at 1 mil - Square Feet	314	1,540
Coverage at 1 mil - Square Inches	45,271	221,737
Diameter of Pipe (inches)	30.24	30.24
Linear inches per gallon	1,497	7,333
Linear feet per gallon @ 1 mils thick	125	611
Linear feet per gallon @ specified coating thickness	125	611
Cost per linear foot coated specificed inch diameter pipe	\$ 0.2132	\$ 0.1111

WB = \$0.2132 / Pipe

UV = \$0.1111 / Pipe

Water-Based 91% more costly

Spray Efficiency UV - 96% WB - 70%

STAGE 5 – ROI DISCUSSION: OTHER COST SAVINGS

OTHER COST SAVINGS TO CONSIDER Additional Benefits Dollars Savings Comments No VOC's - Minimal Reporting No HAP's - Minimal Reporting No Solvent adders Much better ASTM-B117 Salt Performance Significant floor space savings - Square Foot Minimal clean up activities Oven Cost Savings - Utilities Savings On-Site Inventory 80% less Less internal handling costs Less transportation costs **Humidity** issues

DETAILED COST ANALYSIS SHOULD BE CONDUCTED

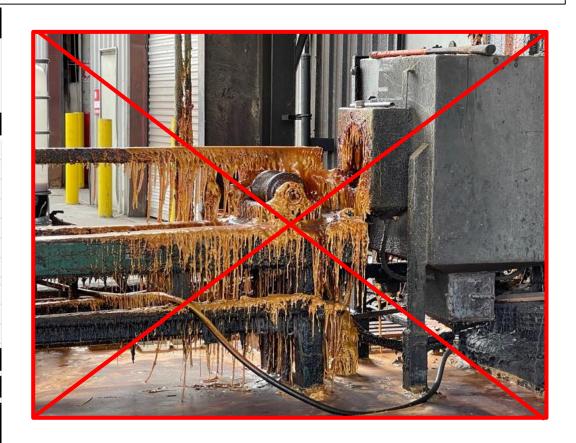
STAGE 5 – VOC REDUCTION DISCUSSION:

VOC CALCULATOR - SOLVENT, WATER & UV COATINGS

Water-Based Coating per YEAR

Michael Kelly
Allied PhotoChemical, Inc.
mkelly@alliedphotochemical.com
Mobile: 248-515-9240

FUNCTIONAL PIPE - VOC SAVINGS


Description	Entered Data	Measurement
Solvent-Based Coating VOC's / Gallon:	0.00	Lbs / Gallon
Solvent-Based Percent Solids / Gallon:	0.0%	Percentage
Water-Based Coating VOC's / Gallon:	2.06	Lbs / Gallon
Water-Based Percent Solids / Gallon:	28.0%	Percentage
UV Coating VOC's / Gallon:	0.00	Lbs / Gallon
UV Coating Percent Solids / Gallon:	100.0%	Percentage
Amount of Coating Consumed:	Entered Data	Measurement
Solvent-Based Coating per YEAR	-	Gallons

VOC COMPARISON - SOLVENT / WATER / UV

38,000

Gallons

Description	Solvent-Based	Water-based	UV
Percent Solids	0.0%	28.0%	100.0%
VOC's per coating	0.00	2.06	0.00
Amount of VOC's based on consumption	-	78,280	-
Total VOC's emissions SAVED per YEAR: LBS		78,280	

VOC / LBS SAVINGS PER YEAR: >78,000 LBS

STAGE 6 – VISIT TO ALLIED & UV INTEGRATORS / TRIALS:

STAGE 7 – BEST PRACTICES:

BEST PRACTICES

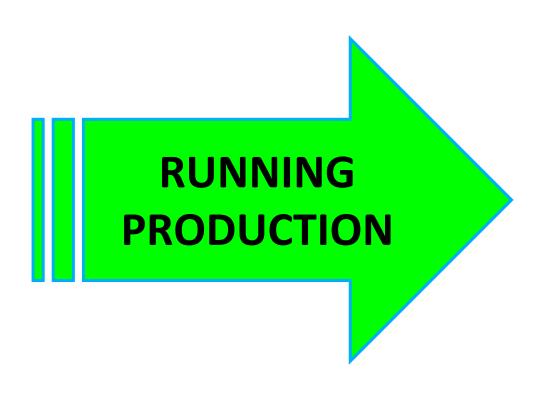
UV SYSTEMS INTEGRATOR:

Section	Category	Description
Section 1	Paint Heating Systems	- Water Jackets for Spray Systems / etc.
Section 2	UV Spray Containment System – Air Rings	- Entry & Exit of UV Spray Systems
Section 3	Preventative Maintenance / PPE Gear Schedule	- Provides shift / day / weekly maintenance schedule
Section 4	One Page "Cheat" Sheets	- Examples
Section 5	System Flush before shipment to Customer	- Use Flushing Monomer to clean / flush before shipment

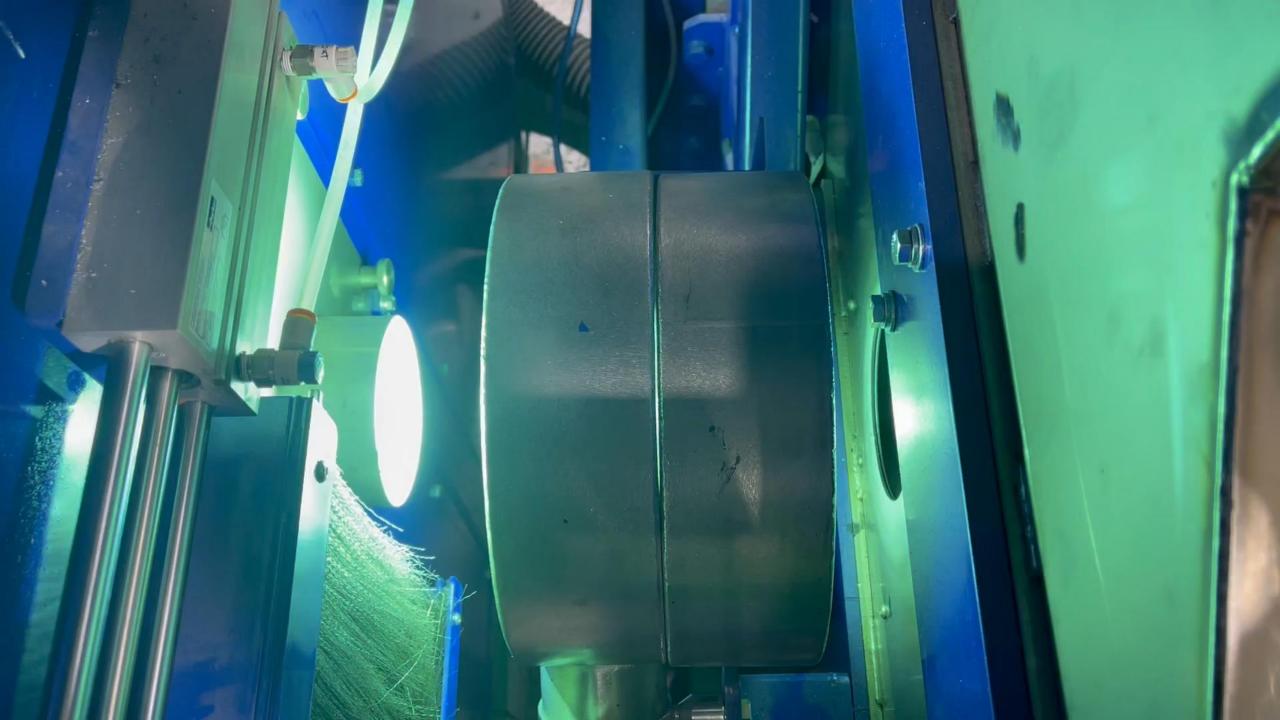
CUSTOMER RESPONSIBILITY:

Section 6	Tote Warmers / Heat Controllers	- Heating Blankets / Power Blanket Adjustable Controllers
Section 7	Tote Agitators	- Electric Gear Drive / Variable Speed Drive / Pneumatic Air
Section 8	Tote Scales	- Heavy Duty Pallet Scale w/ LED Indicator 2'x2' / 4'x4'
Section 9	UV Spill Kit	- Spill Kit

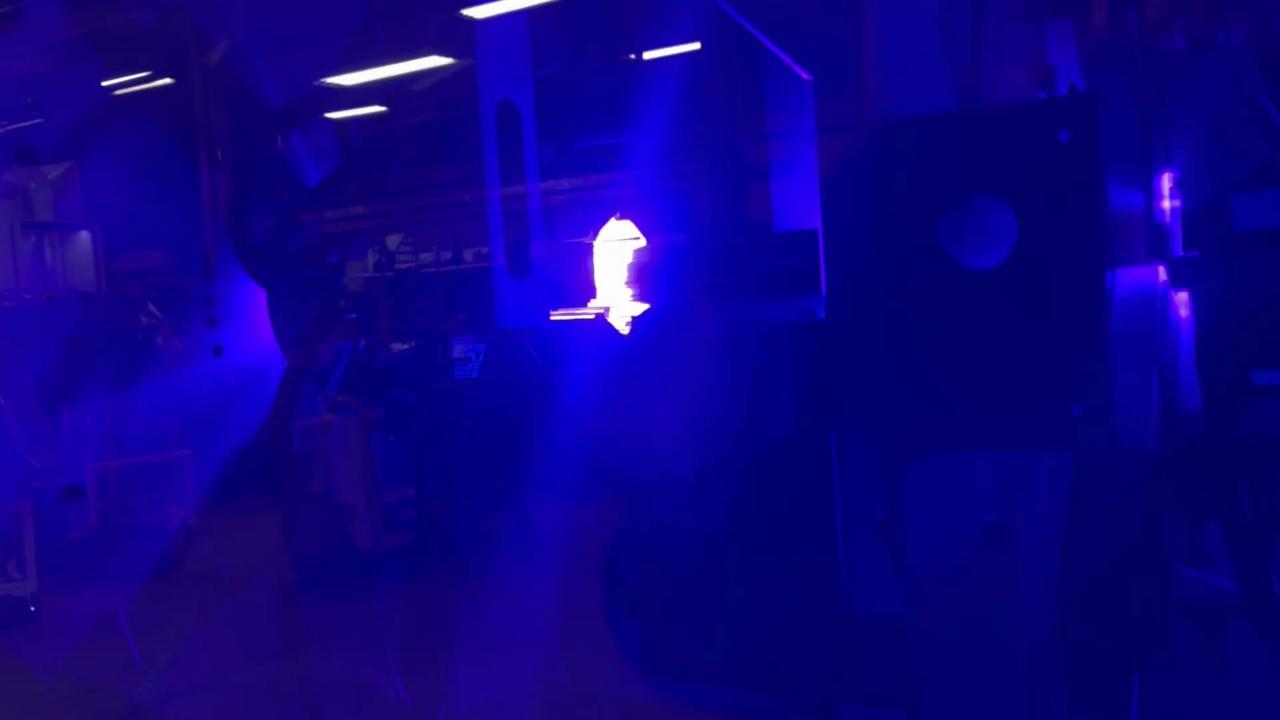
NOTE: FAILURE TO FOLLOW THESE BASIC UV BEST PRACTICES WILL IMPACT YOUR OVERALL PRODUCTION







COMPLETED STAGES 1-7:



STAGES 8 - 14: POST-PRODUCTION STAGES:

- 8. Quality Certification Procedures DEFINED / Customer Specific
- 9. PPE Personal Protection Equipment recommendations
- 10. EHS Safety Training / On-site / Multi-Shift
- 11. On-site Start-Up Assistance UV Systems Integrator / UV Lights / Allied UV
- 12. Maintaining your UV System
- 13. Monitoring the ROI / Cost Savings / Overall benefits of UV
- 14. On-Going Service & Support Continue EHS / Customer AUDITS & REPORTS

STAGE 8 – QUALITY CERTIFICATION PROCEDURES

QUALITY CERTIFICATION PROCEDURES

Section	Category	Description		
Section 1	Measuring Substrate cleanliness	- 898 Tape on substrate before wash / after wash / before coating		
Section 2	Measuring Coating Thickness	- Digital OR Analog Magnetic Thickness Gauge – FISCHER		
Section 3	X-Cross Adhesion Test	- X-Cross Hatch with Scotch 898 Tape – ASTM 3359-D		
Section 4	Adhesion Test	- Scotch 610 or 898 Tape Adhesion Test		
Section 5	Quality Measurement Log Worksheet	- Document various Process and Coating Parameters		
Section 6	Solvent Resistance Rub	- Specific number of Acetone or MEK rubs - ASTM D4752		
Section 7	Copper Sulfate Stain Test	- Detects no-coat portions of Galvanized Tube (GALVANIZED ONLY)		
Section 8	Stain Test – KZ-9000-Stain	- Detects possible under-cure condition (GALVANIZED ONLY)		
Section 9	Heraeus Light Reflector Maintenance	- Best means to identify and clean DIRTY reflectors (MICROWAVE)		
Section 10	LED Light Maintenance	- Best means to clean / repair LED Light (LED)		
Section 11	EIT Power Puck Measurements	- Confirming your UV Energy Output of UV Lights		
Section 12	Intellego Smart Measurement Strips	- Easy means to measure UV Energy Output of UV Lights		

NOTE: FAILURE TO FOLLOW THESE QUALITY CERTIFICATION PROCEDURES WILL IMPACT YOUR OVERALL PRODUCTION

STAGE 8 – QUALITY CERTIFICATION PROCEDURES

Allied PhotoChemical®

DOCUMENT NAME: MEASURING COATING THICKNESS w/ DIGITAL MAGNETIC THICKNESS GAUGE

DATE: 04/24 3.5 REVISION:

PROCEDURE: This document provides details on the best means to measure the coating

thickness. With 100% solids UV coatings, WTF - Wet Film Thickness is the

same as DFT - Dry Film Thickness.

SPECIFICATION: Recommend: Fischer PERMASCOPE * MPOR Coating Thickness Gauge

> Description PERMASCOPE® MPOR Handheld

Fischer Document No: Document number 902-517 https://shop.fischer-technology.com/product/dualscope-

mp0r/?v=893f26889d1e

PICTORIAL REVIEW: Below are examples of specific thickness measurement devices

CAUTION:

Be aware that Pipe Scale / Galvanized Layer can impact your Coating Thickness

Measurements. Please implement off-set when calibrating Gauge.

Example: Scale is 0.3 to 0.4 Mils - Then offset Measurement Gauge 0.35

SAMPLING:

Please read 5 samples per actual reading / Take average

Digital Magnetic Thickness Gauge

16024 Angelo Drive Macomb, MI 48042 USA

COATING THICKNESS WORK **INSTRUCTIONS**

Allied PhotoChemical®

DOCUMENT NAME: DATE:

Dye Stain Test 09/15/2021

REVISION: PROCEDURE:

The dye stain test is used to analyze coating cure. A piece of coated substrate is submerged into stain for 30 seconds. After the 30 seconds remove the substrate and wipe away any remaining stain from the surface. Analyze the part for dark stained surface, as these areas show under cured coating. Note: Even cured coating will stain, however you are looking for extreme areas of

PICTORIAL REVIEW:

Below are picture examples of conducting copper sulfate stain test.

1. Place solution in a container large enough to submerse a pipe end. Solution should be 2-3 inches deep. Wipe the coated pipe with a clean, dry cloth before submersing.

2. Leave pipe submersed for 30 seconds, then remove and wipe clean

COATING DYE **STAIN TEST**

STAGE 9 – PPE RECOMMENDATIONS

EHS SAFETY EQUIPMENT

OUTLINED ARE RECOMMENDATIONS FOR INFORMATION SAKE.

CRITICAL TO PROVIDE PROPER EHS TRAINING – CONTINUE REFRESHER TRAINING OPERATORS, SUPERVISORS & MANAGEMENT

STAGE 10 – EHS / SAFETY TRAINING & WORK INSTRUCTIONS

ULTRA VIOLET (UV) CURABLE COATING PROCESS AND SAFETY CUSTOMER TRAINING

45 MINUTES COURSE / SHORT QUIZ

CRITICAL TO PROVIDE PROPER EHS TRAINING – CONTINUED REFRESHER TRAINING FOR OPERATORS,
SUPERVISORS & MANAGEMENT

STAGE 10 – EHS / SAFETY TRAINING & WORK INSTRUCTIONS

when exposed to UV light. This fact sheet is meant as a general guideline for the handling of UV curable resin materials used in manufacturing.

PURPOSE:

To ensure employees understand management's expectations for accident prevention and control.

- Outline precautionary steps to take in order to prevent an incident / accident from occurring.

The following should be used as a training tool for how to deal with different levels of UV coating coming into contact with the employee uniform.

NORMAL DAILY EXPOSURE:

- Small amounts of coating associated with cleaning, filter changes and set-up items
- A. Immediately remove affected garment and place into soiled laundry bin provided in Locker Room area. B. Immediately wash any area of skin that has been in contact by UV coating with warm soapy material
- - Large amounts of UV coating associated with tote rupture, feed line break, reservoir leak, other cases that garments become "SOAKED" with coating.
 - A. Immediately remove affected garment and dispose of it in plastic hazmat drum provided by the UV coating
 - B. Inform your Supervisor of what was disposed of, so replacement garments can be delivered
 - c. Immediately wash any area of skin that has been contacted by UV coating with warm soapy water
 - Seek necessary medical attention if needed

FOLLOW GOOD HOUSEKEEPING PROCEDURES

- Keep work area clean. Remove any spilled coating from equipment, storage or floor area Use absorbent rags to clean
- USE COMMON SENSE Make sure you have the PROPER PPE Equipment on-site. It is the End-Customer's responsibility to provide proper PPE Equipment

The information provided in Safe Handling of UV Curable Resins is believed to be accurate at the date of publication. The guidelines found in this Guide may not cover all applicable legal requ Allied PhotoChemial is not responsible for the conditions of use of particular UV coatings. This guide is offered in good faith and is believed to be reliable; however, it provided neither warranties representations for any of the products it mentions. Allied PhotoChemical disclaims any and all liability for the damages incurred directly or indirectly through the use of this document. Nothing representations for any one providered a recommendation to use any particular company's product. Contact Allied PhotoChemical for additional information. REVISION 1.1 22 12

SAFFTY BULLETIN

UV COATING ON **UNIFORMS**

Allied PhotoChemical® PROPER HANDLING OF UV CURABLE COATING RESINS

As with all chemicals, UV curable resins must be handled in a safe manner. Ultraviolet (UV) curable resins for manufacturing cure rapidly when

exposed to UV light. This fact sheet is meant as a general guideline for the handling of UV curable resin materials used in manufacturing.

CONSULT MANUFACTURING DOCUMENTATION

- Consult Safety Data Sheets (SDS's) provided by suppliers of UV curable resins as the primary safety and handling documents
- $Contact\ Manufacturer\ if\ you\ have\ any\ specific\ questions-Allied\ PhotoChemical-\underline{info@alliedphotochemical.com}\ or\ 586-232-3637.$ Always consult with Manufacturer - Allied PhotoChemical if you have any questions. On-site / Web-based EHS training is offered at no charge

USE PERSONAL PROTECTIVE EQUIPMENT [PPE]

- Wear appropriate chemical-resistant gloves (nitrile or neoprene) DO NOT use latex gloves.
- Use safety glasses/goggles with UV protection.
- Area of use should have proper ventilation / air movement, per local government requirement:

- May cause skin and eye irritation / May cause skin sensitization.

FOLLOW GOOD HOUSEKEEPING PROCEDURES

- Keep work area clean. Remove any spilled coating from equipment, storage or floor area Use absorbent rags to clean spills immediately
- USE COMMON SENSE Make sure you have the PROPER PPE Equipment on-site. It is the End-Customer's responsibility to provide proper PPE Equipment.

PRACTICAL PERSONAL HYGIENE

- Do not eat, drink or smoke in work area. Remove jewelry (rings, watches, bracelets) prior to handling uncured UV curable materials
- Avoid direct contact with any UV curable resins or contaminated surfaces, including any parts of the body or clothing. Do not touch the resin without wearing protective gloves and do not get it on your skin.
- Wash hands, face or any body parts that may contact UV curable resin with mild skin cleanser and soaps after handling do not use solvents. Remove and wash contaminated clothing or jewelry; do not reuse any contaminated personal items until properly cleaned with detergent. Discard any contaminated shoes or leather goods.

KNOW FIRST AID PROCEDURES

- Flush contaminated eyes or skin thoroughly with plenty of water for 15 minutes
- Wash skin with soap and plenty of water or waterless cleaner if needed.
- If skin irritation or rash occurs, seek qualified medical attention.
- If ingested, do not induce vomiting. Seek medical attention immediately

STORE CORRECTLY / PER MANUFACTURER'S RECOMMENDATIONS

Keep UV curable resins sealed tightly in their containers, out of direct sunlight and within the temperature range suggested by the manufacturer

- Partially cured or uncured resin waste may be classified as hazardous waste. Please check your state's website for disposal of chemical waste. Do not pour into
- Clean-up materials containing UV curable resins should be isolated in sealed, labeled containers and disposed of as hazardous waste. Do not pour these materials down the drain or into a water system.

SPECIAL THANKS TO RADTECH.ORG - Visit: https://www.radtech.org/sustainability/people

The information provided in Safe Handling of LIV Curable Resins is believed to be accurate at the date of publication. The suitelines found in this Guide may not cover all applicable legal requirement alled Photochemials in our responsible for the conditions of use of particular Vicasings. This guide is offered in good offsh and is believe in enable, the responsible of the reliable; however, it provided entitle representations for any of the products it mentions. Allied PhotoChemical disclaims any and all liability for the damages incurred directly or indirectly through the use of this document. No contained herein should be considered a recommendation to use any particular company's product. Contact Allied PhotoChemical for additional information. REVISION 7.1A. 22. 05. 02.

Allied PhotoChemical 16024 Angelo Drive Macomb, MI 48042 USA

PROPER HANDLING OF UV **CURABLE COATING RESINS**

POST PRODUCTION STAGES:

- 8. Quality Certification Procedures DEFINED / Customer Specific
- 9. PPE Personal Protection Equipment recommendations
- 10. EHS Safety Training / On-site / Multi-Shift
- 11. On-site Start-Up Assistance UV Systems Integrator / UV Lights / Allied UV
- 12. Maintaining your UV System
- 13. Monitoring the ROI / Cost Savings / Overall benefits of UV
- 14. On-Going Service & Support Continue EHS / Customer AUDITS & REPORTS

Date:

ALLIED

CUSTOMER ENGAGEMENT

STAGE 14 – ONGOING SUPPORT / CUSTOMER ASSESSMENT REPORT - CAR

QUARTERLY VISITS / AS NEEDED VISITS: PROACTIVE AUDIT OF UV PROCESS

Customer: Location: Line/Mill#:	:			Date:	ALLIED
Process Components Good		Caution	Needs Attention	Notes/Findings:	
COATING STORAGE					
COATING PREP					
WASHER					
DRYER					

MUTUAL ACCOUNTABILITY

Process Comp Notes/Findings: COATING STORAGE COATING PREP WASHER DRYER PRODUCT SURFACE DAY TANK/RECLAIM SPRAY BOX LIGHT BOX MAINTENANCE (PM's) PPE/SPILL KIT Quality Assurance Caution Notes/Findings: HICKNESS ADHESION CURE VISUAL DEFECTS **Please Contact Allied UV for Detailed Information About This Report*

Coating:

Size (in.):

Speed ft/mir

Customer

Location:

Line/Mill#

OUTCOME

SIGNIFICANT BENEFITS:

- ✓ Sustainability / Environmental Advantages No VOC's or HAP's
- ✓ Great Overall Process Improvements Faster Production Speeds
- ✓ Improved Product Performance
- ✓ Lower per linear foot coating costs
- ✓ Energy Savings
- ✓ And many others.....

9510/2024

CONVERSATION SESSION

ASK YOUR QUESTIONS

Michael Kelly mkelly@AlliedUV.com 248-515-9240

