

Characteristics of Styrene Sulfonates and their Application to Coatings Michael East, Ph.D.

Styrene Sulfonates

- NaSS (M=Na)

 Sodium Styrene Sulfonates
- · AmSS (M=NH₄)

Ammonium Styrene Sulfonates

Agenda

- 1. Brief history
- 2. Unique properties of NaSS
- 3. Application & Usage Examples of NaSS
- 4. Introduction of "AmSS"

Brief History

 NaSS was developed in the 1950's by Dow as a dye site for acrylic polymers. Since that time, NaSS has been used in styrene-acrylate polymers, water-based acrylic coating, waterbased adhesives, descaling polymers for industrial boilers (heat resistance), anti-static coatings, clear coating for drinks containers (heat resistance for printing), oil drilling both as an emulsifier for specialized cement and as a gel breaker for fracking, dispersant for pigments/carbon and carbon nanotubes and a number of other applications.

Agenda

- 2. Unique properties of NaSS
- 3. Application & Usage Examples of NaSS
- 4. Introduction of "AmSS"

What is NaSS?

(1) Good Surface Activity

(2) High Reactivity

(3) High Thermal Stability

What is NaSS?

Iter	n	Representative Value ¹⁾	Specification ¹⁾
NaSS ²⁾	%	88.4 ³⁾	84~92
NaBr	%	2.2	≦ 4
Na ₂ SO ₄	%	0.5	≦1
NaOH	%	0.27	≦1
Water	%	8.0	-

2) Vinyl activity by redox titration

3) 96% in dry basis

JP5946094B (filed Oct.16, 2012) JP5930307B (filed Oct.15, 2012) US9,505,713B2 (filed Sep.2, 2013) TWI579261B (filed Nov.15,2012) CN1047365216B (filed Sep.2, 2013) MY-186412-A (filed Sep.2, 2013) JP7365444B2 (filed Mar.9, 2022)

Good Surface Activity

Well suited for emulsion polymerization, dispersant

Wilhelmy method (Pt plate, 25°C, solution in water)

Excellent Radical Reactivity

Good compatibility with conjugated monomers such as Styrene, Methacrylate

Monomer	Q	е
NaSS	2.49	-0.59
2-Acrylamid-2-methylpropane sulfonic acid	0.39	0.22
Sodium methalyl sulfonate	0.23	0.28
Sodium vinyl sulfonate	0.06	0.41
Sodium allyl sulfonate	0.15	-0.24
Methacrylic acid	2.34	0.65
Sodium methacrylate	1.36	-1.18
Acrylamide	1.15	1.30
Methacrylamide	1.46	1.24
N-Vinylpyrrolidone	0.14	-1.14
Maleic acid	0.75	1.50

Copolymerizability with NaSS

Compatibility	Comonomer		
- Free House	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Excellent	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$		
Fair	$ \longrightarrow_{O} OH $		
Poor	HO_2C CO_2H O NH_2		

High Thermal Stability

Well suited to applications that involves high temp. condition

Agenda

3. Application & Usage Examples of NaSS

4. Introduction of "AmSS"

Applications

Emulsion polymerization

- ✓ Water-based acrylic paint
- Drink container coating
- Water-based adhesives
- → Acrylic fiber

Solution polymerization

- Anti-static Coating
- → Pigment dispersion
- ✓ Anti-scaling agent
- ✓ Oil drilling (gel breaker)

XNumerous other applications are possible.

Latex stabilized by NaSS

Benefits of NaSS

- Improvement of colloidal stability by the fixed NaSS
- Adhesion increases by the reduction of surfactant

Usage Example: Soap-Less Emulsion Polymerization

Properties of Emulsion: Benefits of NaSS

Reduction of conventional soap

- High Mechanical Stability
- Low Water Absorption
- Low Foaming

Fig.2 30ml emulsion diluted 3% solid was put into 100ml cylinder and shook violently ten times

Fig.1 Coagulation time by agitation at 5000rpm

Fig.3 Dried film was immersed in water for 48h at RT

Anti-static Coating: plastic tray

Agenda

4. Introduction of "AmSS"

What is AmSS?

Features

- 1. Metal-Less
- 2. Organic solvent soluble
- 3. Good Surface Activity, High reactivity etc...

Basic Infomation

(Regulatory information)

CAS No.	19922-72-6
MITI(JAPAN)	3-1948
TSCA(USA)	-
REACH(EU)	-

(Composition)

Item		Representative Value	Specification [Provisional]	
AmSS 1)	wt%	97.5	≧95	
Na [†]	wt%	0.3	(≦0.5)	
Br ⁻	wt%	≦ 0.1	(≦0.1)	
Water	wt%	0.1	-	

·SO₃NH₄

¹⁾ Vinyl activity by redox titration

Features of SS monomers

so ₃ X	AmSS (X = NH ₄)	NaSS (X = Na)
[Grade]	[Development]	[Commercial]
Solubility	Good	Fair
Stability *	Good	Excellent
Heat-resistant	Good (decomposition temp.ca.300°C)	Excellent (decomposition temp.ca.400°C)
Purity	Excellent (≧95%)	Good (≧84%)
Metal Content	Low (<0.5wt%)	High (11~12wt%)

^{*}Characteristics that make it difficult to spontaneously polymerize.

Solubility in various solvents

Solubility in various solvents

Solvent	SO ₃ NH ₄	SO ₃ Na
H ₂ O	AmSS 26.2	NaSS 21.2
DMSO	43.9	27.3
DMAc	33.2	8.0
NMP	31.5	8.6
DMF	27.0	8.7
DMI	22.0	5.4
MeOH	13.2	4.4
EtOH	3.1	0.3
IPA	0.13	0.03
MeCN	0.13	
Acetone	0.03	No data No data

(wt%, 25°C)

Solubility in water (temperature dependence)

Temp.	AmSS	NaSS
25	26.2	17.6
40	32.1	24.3
50	37.8	28.8

(wt%)

Surface Activity

Similar to NaSS, Well suited for emulsion polymerization

Wilhelmy method (Pt plate, 25°C, solution in water)

Heat-resistant

AmSS also has sufficient heat resistance

Under nitrogen atmosphere Temp.: R.T. → 500°C, 10°C

Polymerizability

Excellent Radical Reactivity

Comparison of homopolymerization in water

< recipe >

Monomer: 10wt%

· Initiator V-50: 0.15mol%

· Solvent : Water

• Temp. : 75°C

Usage Example: Soap-Less Emulsion Polymerization

* Ammonium Dodecylbenzene Sulfonate

Properties of Emulsion: Benefits of Styrene Sulfonates

- Same benefits of AmSS and NaSS on emulsion properties
 - Low Aggregation
 - High Stability to Organic solvent

Fig. Aggregation rate after the polymerization (*aggregates/overall monomer × 100)

Fig. Stability to Methanol - Methanol conc. to aggregate -

Advantages of AmSS: Solubility

Good solubility and copolymerizability in organic solvents

recipe:

- · AmSS/St=29/71mol.r
- · Overall Monomer: 31wt%

- Initiator AIBN : 1mol%Solvent : NMP or DMSO
- Temp. : 70°C

Advantages of AmSS: Metal-less

- Improved moisture and water resistance
- Expanding to metal-free or less applications
 - Special coatings
 - Electronic materials

etc...

<Moisture absorption test>

- *After dehydrating the sample by vacuum drying, track the weight change over time under the following atmosphere
 - Shelf dryer/Petri dish/powder sample
 - -30°C/75%RH

Water resistance: Effect of metal-less

- AmSS-coatings show good water resistance
 - Low swelling, keep strength
 - Prevents clouding of the coating

<Polymerization Recipe>

Monomer

St/BA: 50/50wt.r

AmSS(NaSS): 2mol%

Overall: 48wt%

· Initiator V-40 : 1mol%

· Solvent : DMAc

Temp.: 90°C × 46h
 Overall conv.: >99%

<Film Preparation>

· Substrate : Slide Glass

• Dry: 100°C×24h,full vacuum

· Thickness : ca.0.15mm

<Water Resistance>

· Immersed in water at 40°C × 25h

Fig1. Weight gain after immersion

AmSS	NaSS	AmSS	NaSS
0.5mol%		2.0	mol%
WED	THU	WED	THU
3	4	3	4
10	11	10	11

Photo1. Appearance of the film after immersion

Contact

BOOTH NO. 26 TOSOH USA

Tosoh USA, Inc. https://www.tosohusa.com

3600 Gantz Road Grove City, OH 43123

Tel: +1-614-277-4348

Fax: +1-614-875-8066

E-mail: michael.east@tosoh.com

