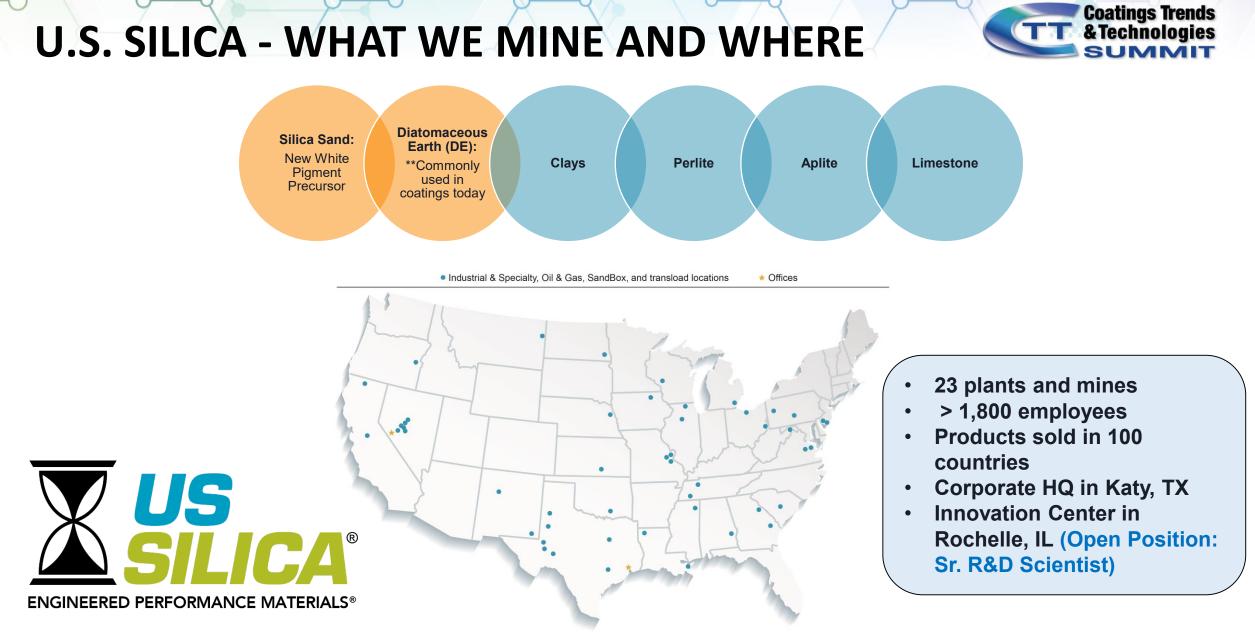


ENHANCING WHITE PIGMENTS FOR INNOVATIVE COATINGS

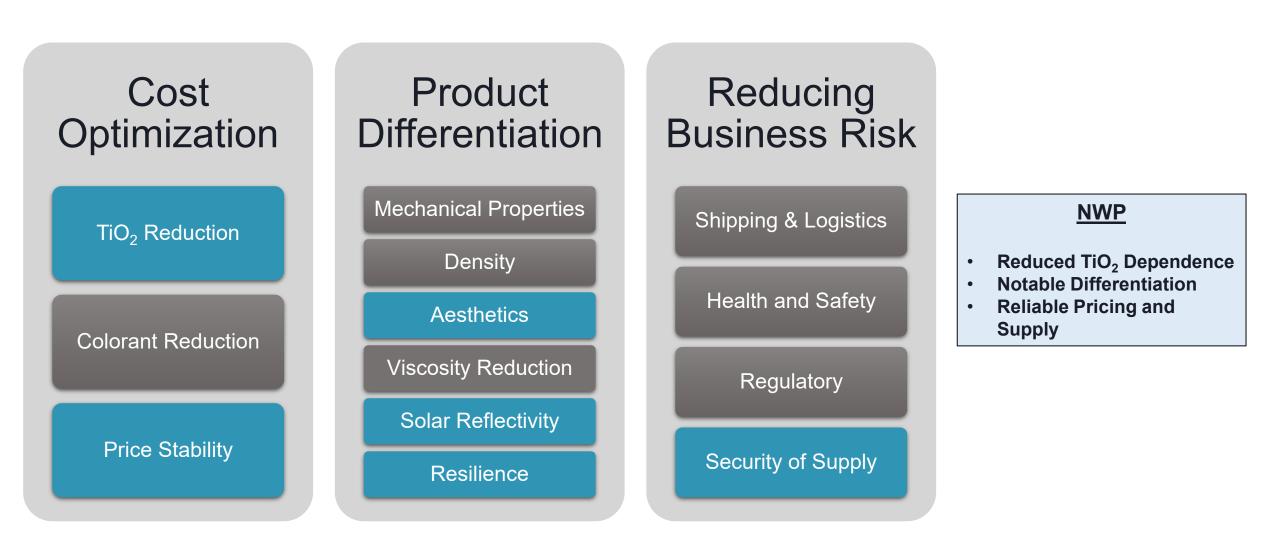
- 1. New White Pigment (NWP) for Coating Enhancements An Introduction
- 2. NWP for Reduced TiO_2 Dependence in Coatings Proof-of-Concept
- 3. Verifying and Extending Enhancements Lubrizol Collaboration
- 4. Conclusions



1. New White Pigment (NWP) for Coating Enhancements – An Introduction

- 2. NWP for Reduced TiO_2 Dependence in Coatings Proof-of-Concept
- 3. Verifying and Extending Enhancements Lubrizol Collaboration
- 4. Conclusions

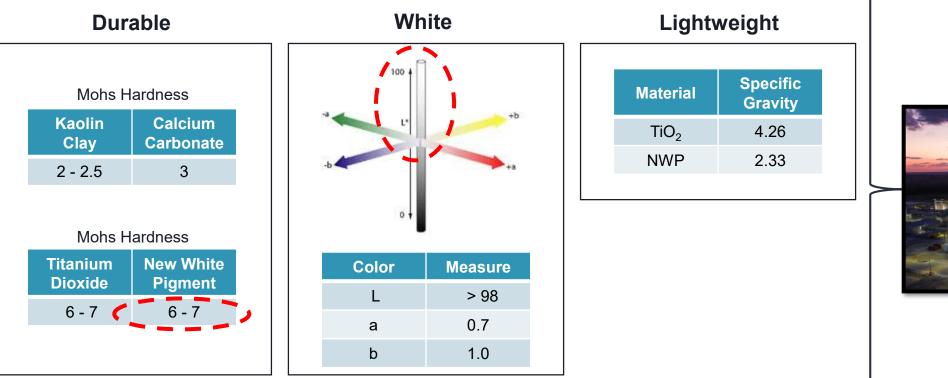
NEW WHITE PIGMENT (NWP)



- **NWP** is a high-white pigment for thermoplastics, coatings, and building products
- NWP is part of a product line of white products from U.S. Silica: D90 nominal particle sizes include 10 um, 15 um, 20 um, 40 um and higher
- In development since 2020, it's been commercialized in coatings, countertops, and cementitious applications
- NWP is used to **complement** other pigments, like **titanium dioxide** or **colorants** across a wide variety of formulations
- By using NWP, manufacturers can reduce titanium dioxide and pigment use by up to 50%, which can **reduce pigment/filler** costs by up to 30%

NWP – ENHANCING COATINGS

TYPICAL PROPERTIES OF NWP AND TiO₂


	Talc	Kaolin (Clay)	Calcium Carbonate	Barium Sulfate	Titanium Dioxide (Rutile)	NWP
Mohs Hardness	1	2 – 2.5	3	3 – 3.5	<mark>6 – 7</mark>	<mark>6-7</mark>
Typical Hunter L*a*b* Color Values	95 / 0.5 / 2	93 / 1 / 3	97 / 0.2 / 1	96 / 0.3 / 1.5	99 / 0.1 / 0.7	<mark>98</mark> / 0.7 / 1.0

NWP TDS:

TYPICAL PARTICLE SIZE (LASER DIFFRACTION) D-90 (μm) 5.8		TYPICAL MEASURE	Other White Product	D-50 Particle Sizes	
		Hunter L > 98.0			Offerings
D-50 (μm)	2.4	а	0.7	10*	4 microns
D-10 (μm)	1.3	b	1.0	15	5 microns
				20*	9 microns
	GENERAL	PROPERTIES		40	12 microns
Nohs Hardness	6-7	Refractive Index	1.49	Granular materia	als available too
pH	9-10	Specific Gravity	2.33		
				*Available fo	or evaluation

NWP is most similar to TiO₂ than other minerals based on whiteness and hardness

NWP: DURABLE, WHITE, AND LIGHTWEIGHT

Coatings Trends & Technologies

Domestically Produced

- 1. New White Pigment (NWP) for Coating Enhancements An Introduction
- 2. NWP for Reduced TiO₂ Dependence in Coatings Proof-of-Concept
- 3. Verifying and Extending Enhancements Lubrizol Collaboration
- 4. Conclusions

POC: COOL ROOF COATINGS

- Cool roof coatings specified by ASTM D 6083 97a
- Specified properties are viscosity, volume solids, weight solids, elongation, tensile strength, accelerated weathering, permeance, water swelling, adhesion, fungi and tear resistance, and flexibility
- Focus on solar reflectance and thermal resistance

Two sets of data:

- **POC 1:** Head-to-head higher loading white pigment.
- **POC 2:** Lower pigment loading with comparisons looking at alternatives.

POC 1 – HIGH NWP LOADING: TESTING, APPROACH, KEY FINDINGS

Proof-of-Concept 1.A: High Pigment Loading

Demonstrated same processing

- Pigment load, wet-out, and grind times
- Energy requirements
- Hegman measurements

Different replacement levels with NWP

- Control 0% replacement
- 12.5% TiO2 replacement
- 25% TiO2 replacement
- 50% TiO2 replacement

Demonstrated same performance

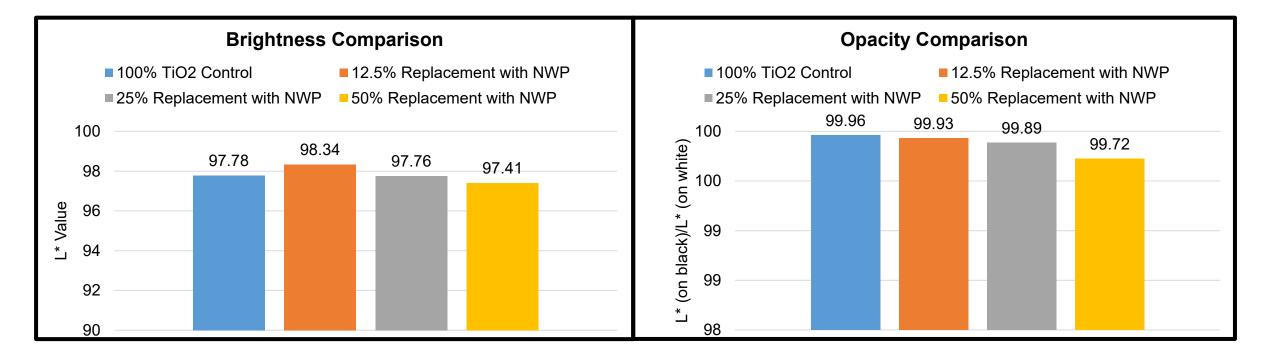
 In-can stability, dry time, and dirt pick-up

Demonstrated same adhesion

 No adhesion impact up to 50%, ASTM D903 "cross hatch"

Demonstrated similar weathering (accelerated and outdoor)

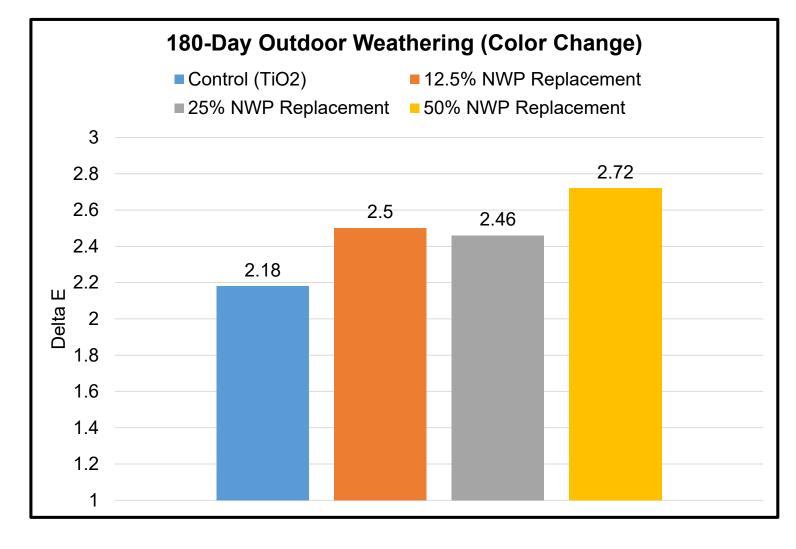
 Delta E (change of color) was similar for all weathered samples


Key findings

- 1) Negligible change in brightness
- 2) Minimal change in opacity

Control formulation for "POC 1": TiO_2 is in control formulation loading = 20%

POC 1 – HIGH NWP LOADING: COLOR AND OPACITY


Dry thickness 10 mil

NWP-samples show no significant change in brightness and minimal decrease in opacity.

WEATHERABILITY

Weathering Station

Control formulation

for "POC 2": TiO₂ is

POC 2 – REDUCED NWP LOADING: TESTING, APPROACH, KEY FINDINGS

POC 2: Reduced Pigment Loading

Demonstrated Same Processing

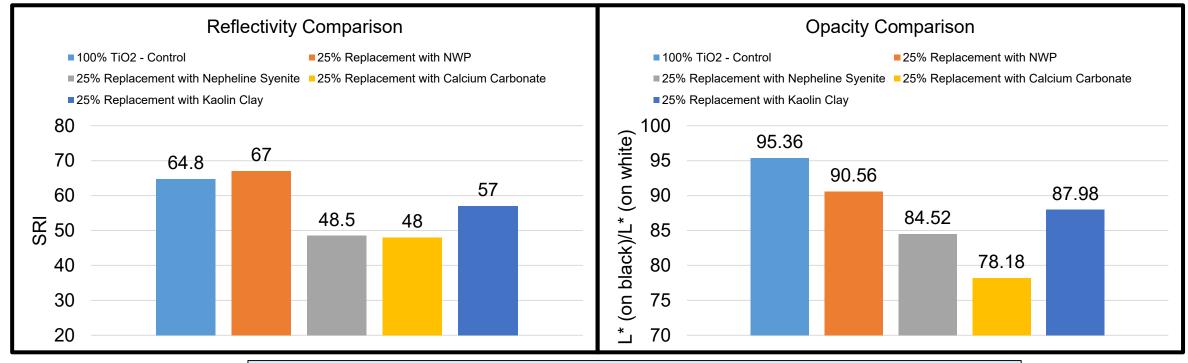
- Pigment load, wet-out, and grind times
- Energy requirements
- Hegman measurements

Different Replacement Levels

- Control -0% TiO₂ Replacement
- 25% TiO₂ Replacement
 - NWP
 - Calcium Carbonate
 - Nepheline Syenite
 - Kaolin clay

Demonstrated Same Performance

- In-can stability
- Dry time
- Dirt pick-up


in control formulation loading = 8%

Key Findings

- 1) Enhancement in solar reflective index
- Opacity closer to TiO₂ than other white alternatives

POC 2 – REDUCED NWP LOADING:

Dry thickness 10 mil

NWP Showing Enhanced SRI and Improved Opacity:

- The type of mineral has an impact on performance
- NWP improves solar reflectivity (Orange Bar, Left) versus other white pigments
- NWP (Orange Bar, Right) provides more opacity than other white fillers

- 1. New White Pigment (NWP) for Coating Enhancements An Introduction
- 2. NWP for Reduced TiO_2 Dependence in Coatings Proof-of-Concept
- 3. Verifying and Extending Enhancements Lubrizol Collaboration
- 4. Conclusions

LUBRIZOL COLLABORATION: ROOF COATINGS – FORMULATION, PERFORMANCE, KEY FINDINGS

Formulation

- Acrylic resin specifically designed for elastomeric roof coatings; 10% TiO₂; 30% CaCO₃
- Dispersant

Similar Performance

- Processing
- Opacity and Color
- Tensile Strength and Low-Temp Flexibility

Control Formulation for "Lubrizol Collaboration": TiO₂ loading of 10%

Different Replacement Levels

- Control -0% TiO₂ Replacement
- 25% TiO₂ Replacement
- 50% TiO₂ Replacement

Key Findings

- Opacity and color close to TiO₂ control sample
- 2) Small enhancements in water absorption and impermeability

LUBRIZOL COLLABORATION: COLOR ANALYSIS AND OPACITY

Coatings Trends & Technologies

Dry thickness 3 mil

25% TiO_2 replaced with NWP

Replacing TiO₂ with NWP – Aesthetic Changes:

- 25% TiO₂ replacement causes very little change in color and opacity
- Even 50% TiO₂ replacement only increases dE to 0.97 units and reduces opacity by 6.18 units

	L*	a*	b*	ΔL*	ΔE	Opacity
Control - 10% TiO2	95.99	-0.60	1.72	-	-	87.63
25% TiO2 replaced with NWP	94.77	-0.76	1.57	-1.22	1.24	86.66
50% TiO2 replaced with NWP	94.23	-0.80	1.92	-1.76	1.78	81.45

LUBRIZOL COLLABORATION: MECH. PROPERTIES (ASTM D6083)

Tensile Testing:

	Tensile Peak Stress (psi)	% Elongation Strain at break	Tear Resistance (lbs./f)
Control formulation	610.86	108.11	144.28
25% TiO2 replaced with NWP	593.10	129.79	145.87
50% TiO2 replaced with NWP	622.90	120.93	156.42

Tensile, Elongation & Tear resistance was

performed on 20 mil dry film, prepared as 2x10 mil layers and allowed to cure for 14 days. Tear resistance was tested using the Die C method.

Low Temperature Flexibility:

	13 mm Cylinder	8 mm Cylinder	6 mm Cylinder	
Control formulation	slight cracking	moderate	moderate	
25% TiO2 replaced with NWP	slight cracking	slight cracking	moderate	
50% TiO2 replaced with NWP	slight cracking	slight cracking	moderate	

Low Temp Flexibility / Mandrel bend was

tested using cylindrical test apparatus. Testing was done on a 12-mil film, coated onto aluminum, and was tested at -22°C.

LUBRIZOL COLLABORATION: WATER ABSORPTION AND IMPERMEABILITY

	1-Day Gain (%)	7-Day Gain (%)
Control formulation	13.78	13.61
25% TiO2 replaced with NWP	12.94	13.35
50% TiO2 replaced with NWP	12.56	13.05

Water Swelling was conducted on 20 mil films, dried for 7 days before testing and then submerged in water at 72°F for 7 days.

Water Permeability:

	Permeability of film	Permeability per mil (perms)
Control formulation	8.54	0.39
25% TiO2 replaced with NWP	7.60	0.32
50% TiO2 replaced with NWP	7.52	0.34

Moisture Vapor Transmission was tested using the wet cup method, (described in the ASTM as Test Method B). Testing was done on a 20-mil film, cured for 7 days before testing.

- 1. New White Pigment (NWP) for Coating Enhancements An Introduction
- 2. NWP for Reduced TiO_2 Dependence in Coatings Proof-of-Concept
- 3. Verifying and Extending Enhancements Lubrizol Collaboration
- 4. Conclusions

COOL ROOF COATINGS SUMMARY:

	Processing	Weathering	Opacity	Color	Solar Reflectivity	Water Permeability & Absorption	Mechanicals	Cost
Control	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
NWP - 25% replacement of TiO ₂	\checkmark	\checkmark	\checkmark	~	+	+	\checkmark	+
NWP - 50% replacement of TiO ₂	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	+	~	++
Alternative White Pigments	\checkmark	In Testing	-	\checkmark	-	TBD	TBD	++

© 2024 U.S. Silica Company. All Rights Reserved

LARRY GIBSON DIRECTOR OF RESEARCH AND DEVELOPMENT

(815)846-6040

GibsonL@ussilica.com

www.ussilica.com

