

SOYNEWUSES.ORG

Reduce the Carbon Footprint of Paints and Coatings with Soy

Kris Weigal

Q

OMNITECH

STRATEGIC SUSTAINABLE SOLUTIONS

USE SOY FOR THAT

SOY

O Omni tech

Experienced renewable chemistry consultants with expertise in

- Market research and analysis
- IP landscape
- Competitive analysis
- Product commercialization
- Technology assessment
- Strategic planning
- Life cycle analysis
- Technoeconomic analysis
- Regulatory compliance

Builds demand to ensure strong, profitable future for U.S. soybean farmers

- Represents the half-million U.S. soybean producers in 30+ states
- Promotes sustainability of U.S. Soy farming
- Funds product development and commercialization
- Checkoff contributions of 0.5% of the net market price per bushel sold
- The USB approved \$191.5M for the 2024 fiscal year budget.

U.S. SOY COMMITTED TO SUSTAINABLE FARMING

SOY

Verified Sustainable

U.S. SOY SUSTAINABLE ASSURANCE PROTOCOL (SSAP)

- Third-party audited certification by USDA
- Over 90% participation from U. S. soybean producers
- Focuses on four sustainability directives
- Approved:
 - European Feed Manufacturers' Federation (FEFAC)
 - European Union's Renewable Energy Directive (RED)
 - Global Seafood Alliance Best Aquaculture Practices
 - Tokyo Olympic Procurement Committee
 - Consumer Goods Forum
 - SAI Platform's Farm Sustainability Assessment 3.0
 (FSA) Silver Equivalent

SOY

Sustainability by the Numbers

1980-2020

land use efficiency improvement ⁰**60%**

irrigation water use efficiency improvement

energy efficiency improvement

greenhouse gas emissions efficiency improvement **34%**

per acre soil conservation improvement

U.S. Soy farmers have increased production of soy by 130% using the same amount of land

2025 Sustainability Goals

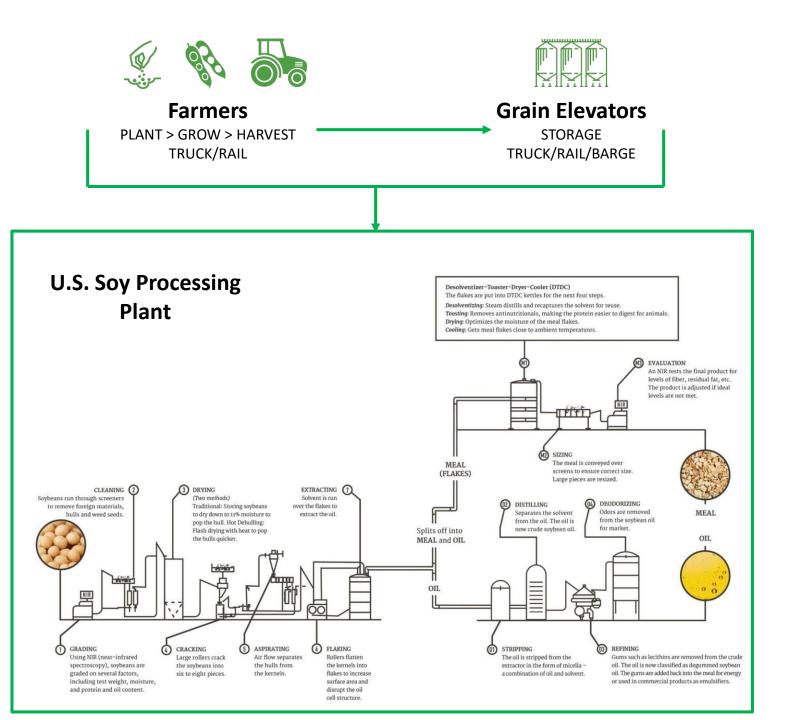
measured as tons per

bushel

measured as acres per bushel INCREASE ENERGY EFFICIENCY BY 10%

measured as BTUs per bushel REDUCE TOTAL GREENHOUSE GAS EMISSIONS BY 10%

measured as pounds CO2equivalent gasses emitted per year


Life Cycle Analysis of U.S. Soy January 2024

SOYBEAN

LCA System Boundary

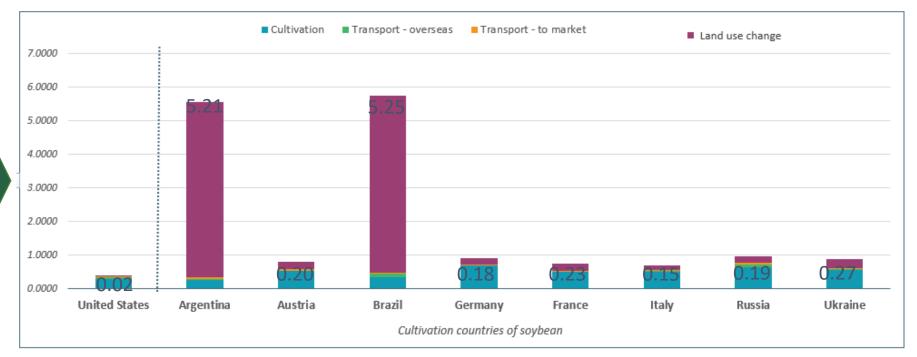
- Commissioned by the United Soybean Board and the National Oilseed Processors Association by Sustainable Solutions Corp. Jan .2024
- Conducted according to ISO 14040 and ISO 14044 International Standards

Global Warming Potential (GWP) Profile

Since 2015 U.S. soy commodities saw GWP reductions of:

- 19% per kg U.S. soybeans
- 6% per kg U.S. soybean meal
- 22% per kg U.S. crude soy oil
- 8% per kg U.S refined soy oil

Soybean cultivation data from 454 farms across 16 states

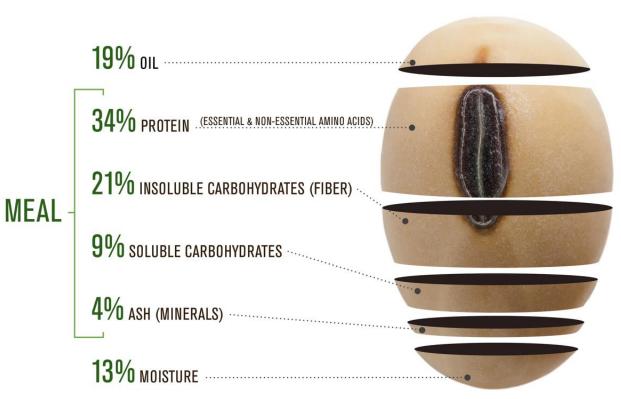

Operations data from 52 soybean processors and 27 soy oil refiners across 18 states

Life Cycle Assessment of U.S. Soybeans, Soybean Meal, and Soy Oil - January 2024 United Soybean Board and the National Oilseed Processors Association

Carbon footprint of US soy

Carbon footprint (including Land Use Change (LUC) of soybean for European market (kg CO₂-eq/kg soybean)

Not all Soy is the same

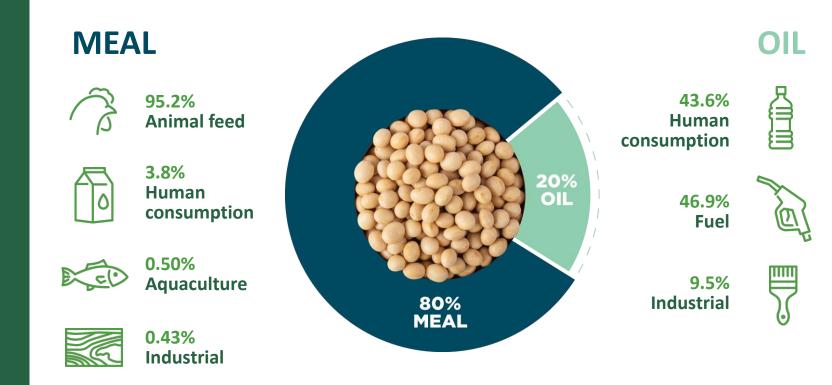


Janjoris Van Diepen, Senior Consultant at Blonk

"U. S. Soy has higher yields, minimal fertilizer use, and efficient machinery, all of which help to minimize U.S. Soy's carbon footprint"

SOYBEAN DECONSTRUCTION

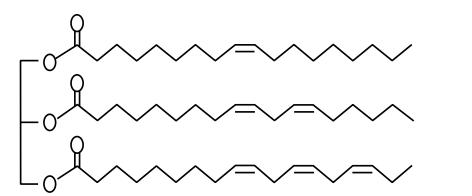
TYPICAL
YIELD
PER
BUSHEL10.7 LBS. OIL
47.5 LBS. MEALBUSHEL1.8 LBS. HULLS


27.2 billion pounds of oil available domestically

Source: USDA, USB

WITH U.S. SOY YOU GET BOTH FOOD AND FEEDSTOCKS

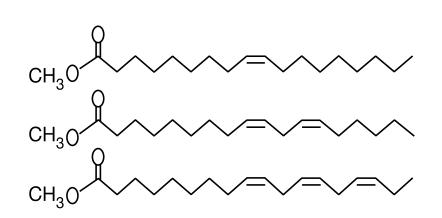
SOY


FOOD + FUEL AND CHEMICALS

Source: Market View Database 2022

"Soybean meal is the main source of feed protein worldwide"

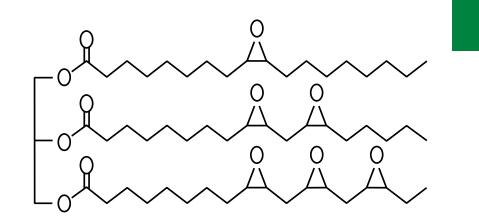
Dr. Rouf M. Mian, acting research leader of the Soybean Research Unit, USDA – ARS and research geneticist at North Carolina State University



Soybean Oil

BASIC SOY OIL BUILDING BLOCKS

Commercially Available


Methyl Soyate

Epoxidized Methyl Soyate

CH₃O

 CH_{3}

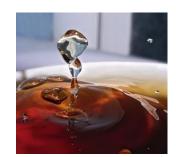
CH₃

Epoxidized Soybean Oil

Soy in Coatings

Wood Stains

 TRUSTED QUALITY SINCE 1921 **RUST-OLEUM®**



Powder Coatings

Plasticizers

VALTRIS SPECIALTY CHEMICALS *Cárgill*[®]

Dispersants

Solvents

Eco Safety Products

BIOSOLVENTS

SOYSOLV

BIOSOLVENTS

Latex Paints

Soy Products Guide, United Soybean Board

USB FUNDED PROJECT (2321-106-0101 & 2421-106-0101)

- Test commercially available soy vs. petro-based coating materials
- Demonstrate effectiveness
 - ✓ Real world formulations
 - ✓ Key performance properties
 - \checkmark Optimize soy formulations and compare to commercial coatings
- Share results with coatings industry
 - ✓ Raw material suppliers-coating manufactures-end users
- Key materials
 - ✓ Coalescing Solvents for water-based architectural and industrial paints
 - ✓ Alkyd Dispersions & emulsions for water-based architectural paints
 - ✓ Solvents for alkyd, epoxy & urethane industrial paints
 - ✓ Dispersants for solvent-based industrial paints

Part 1. Bio-Based Coalescing Solvents

Coalescents:

- B1 Biomass, 100% BC, 0 VOC
- B2 Soybean oil, 95% BC, 0 VOC
- B3 Soybean oil, 96% BC, 0 VOC
- P1-TMPMB
- P2 Proprietary
- P3 -- DPnB / DPM (3:1)

Coatings:

A. Industrial Coatings

• Semi-gloss Direct to Metal (DTM) Paint

B. Architectural Coatings

- Interior/exterior Flat House Paints
- Interior/exterior Semi-Gloss Trim Enamels

Part 1. Bio-Based Coalescing Solvents (PCI MAGAZINE: APRIL 2024)

Semi-gloss DTM Paint

Architectural Flat House Paints

- Application
- Appearance
- **Block Resistance**
- Scrub Resistance
 - **UV** Resistance

Semi-Gloss Trim Enamels

- Application
- Appearance
- Hardness
- **Block Resistance**
- Dirt Pick-Up
- Scrub Resistance
- Weather Resistance
- Package Stability

Paints	Minimum Biobased Content (%)
Industrial Latex DTM	~ 5-6%
Architectural Flats	~ 2-3%
Architectural Semi-Gloss	~ 2-3%
USDA BioPreferred Target - Interior	20%

- Adhesion Appearance
 - Hardness
 - Flexibility & Impact Resistance
 - **Corrosion Resistance**
 - UV Resistance

Stonebridge	Coatings	Lat	oora	tory	Inc.
Stonebridge	courings	Lak	Jora	LOI Y	

Part 2. Waterbased Soy-Alkyd Dispersions Semi-Gloss Industrial DTM Enamels

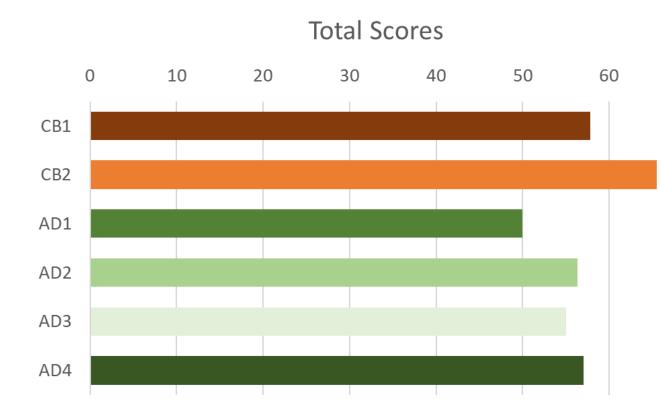
- Soy Long Oil Alkyds (55-70% Soya Oil)
- Soy Medium Oil Alkyds (40-55% Soya Oil)
- Soy Short Oil Alkyds (<40% Soya Oil)
- Acrylic-modified Alkyds
- Resins 45-55% NV in Water
- Semi-gloss DTM Paints
 - ~50% by Wt./60% by Vol. Resin

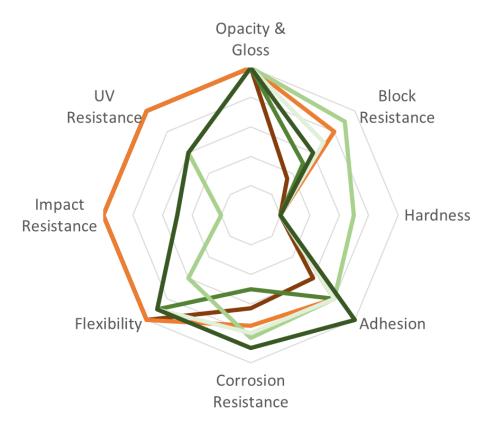
WB Soy-Alkyd Dispersions

Semi-Gloss DTM Enamels

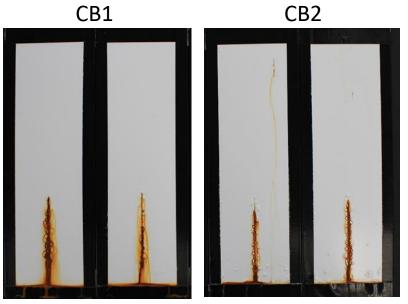
Petroleum-Based Commercial Latex Paints	Bio-renewable WB Soy Alkyd Dispersions
CB-1 – Commercial DTM Paint Benchmark	AD-1 – Medium oil chain stopped alkyd emulsion 55% NVW
CB-2 – Commercial DTM Paint Benchmark	AD-2 – Acrylic alkyd emulsion 45% NVW
	AD-3 – Short oil alkyd emulsion 50% NVW
	AD-4 – Medium oil alkyd emulsion 53% NVW

WB Soy-Alkyd Dispersions Semi-Gloss DTM Enamels


- 4 WB soy-alkyd dispersions
- 2 Commercial DTM paints


Description	Weight (Lbs)	Volume (Gals)
DI Water	180.48	(Gais) 21.6
	5.41	0.81
Rheology Modifer	2.28	0.81
Dispersant Surfactant	1.63	0.28
Defoamer	2.74	0.18
pH Buffer	1.64	0.33
Titanium Dioxide	187.05	5.60
Corrosion Inhibiting Pigment	45.10	1.64
Soy-alkyd Emulsion	530.69	60.56
pH Buffer	3.48	0.46
DI Water	53.94	6.46
Cobalt-free Drier	4.78	0.55
Defoamer	2.75	0.32
Flash Rust Inhibitor	9.02	0.98
Totals	1031	100

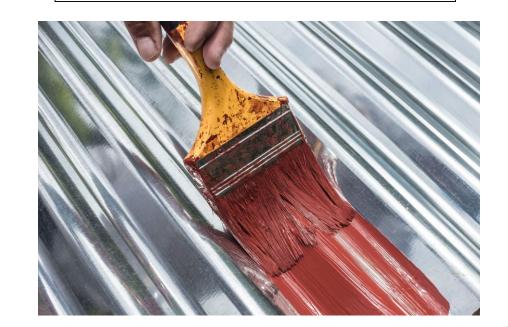
Substrates	CRS &
Aluminum	1
Applicatio	n Drawdown
DFT	2.5 & 5 mils
Cure	7 Days Ambient


% PVC	22
% Weight Solids	
% Volume Solids	34
Density	10.3
VOC (lb/gal)	0

Semi-Gloss DTM Enamels – Optimized vs. Commercial Paints

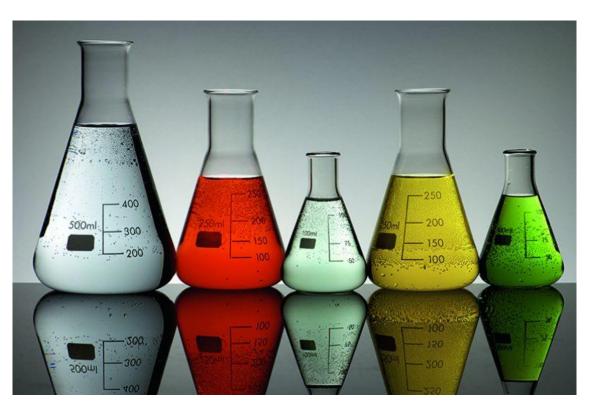
Semi-gloss DTM Enamels Double Coats

ASTM B117 Salt Spray 500 Hrs


Semi-gloss DTM Enamels

Soy-based vs. Commercial Paints

✓ + Adhesion
 ✓ Appearance
 ✓ + Hardness
 ✓ - Flexibility & Impact Resistance
 ✓ + Corrosion Resistance +
 ✓ - UV Resistance


✓ + % Biobased Content

Potential for interior applications over rigid metals or industrial primers.

Waterbased Soy-Alkyd Dispersions Architectural Semi-Gloss Trim Enamels

- Soy-based Long Oil Alkyds (55-70% Soy Oil)
- Soy-based Medium Oil Alkyds (40-55% Soy Oil)
- Soy-based Short Oil Alkyds (<40% Soy Oil)
- Acrylic-modified Alkyds
- Resins 50-60% NV in Water
- Semi-gloss Paints ~35-40% Resin

Waterbased Soy-Alkyd Dispersions

Semi-Gloss Trim Enamels

Petroleum-Based	Bio-renewable
Commercial Latex Resins	WB Soy Alkyd Dispersions
Latex 1 – 100% Acrylic	SA-1 – Medium oil alkyd emulsion
50% NVW, MFFT 17°C	55% NVW
Latex 2 – Acrylic Copolymer	SA-2 – Acrylic alkyd emulsion
50% NVW, MFFT 14°C	60% NVW
	SA-3 – Short oil alkyd emulsion 50% NVW
	SA-4 – Long oil alkyd emulsion 55% NVW

Latex 1 & 2 same as coalescent study with P1 coalescing solvent

Waterbased Soy-Alkyd Dispersions

Semi-Gloss Trim Enamels

- 4 WB soy-alkyd dispersions
- 2 Petroleum-based latex emulsions

% PVC	23
% Weight Solids	45
% Volume Solids	33
Density	10.1
VOC (lb/gal)	0
VOC (g/L)	0

	Weight	Volume		
Description	(Lbs)	(Gals)		
DI Water	232.39	27.83		
Thicknener	5.79	0.87		
Dispersant	10.24	1.16		
Surfactant	2.04	0.23		
Defoamer	2.74	0.33		
Flow Control	4.59	0.53		
Titanium Dioxide	179.14	5.36		
Kaolin Clay	12.56	0.57		
Calcium Carbonate	25.12	1.11		
DI Water	48.27	2.82		
Buffer	0.16	0.02		
WB Soy-Alkyd Dispersion	387.68	44.13		
DI Water	85.61	10.25		
Drier Complex	4.24	0.49		
Defoamer	1.87	0.22		
Freeze-Thaw Stabilizer	7	1		
Defoamer	2.82	0.32		
Totals	1012	97		

Waterbased Soy-Alkyd Dispersions

Semi-Gloss Trim Enamels

Note: Formulations not optimized.

WB Soy Alkyd Semi-Gloss Trim Enamels – Bio vs Petro

Adhesion Application Appearance Hardness **Block Resistance Dirt Pick-Up** Weather Resistance Package Stability

Summary

- Improved block and dirt pick up resistance
- Formula optimizations
- Blend with latex

Architectural & Industrial Paints – Bio vs Petro

- Application
 - Appearance
- Hardness
- ✓ Block Resistance
- ✓ Dirt Pick-Up
- ✓ Weather Resistance
- ✓ Package Stability

% Biobased Content

Paints	Minimum Biobased Content (%)
Industrial Latex DTM	~ 5-6%
Architectural Latex Flats	~ 2-3%
Architectural Latex Semi-Gloss	~ 2-3%
Architectural WB Soy-Alkyd Semi-Gloss	38%

Waterbased Soy-Alkyd Dispersions NEXT STEPS

Wood deck sealers & stains

Interior trim sealers & stains

Part 3: Soy Dispersants For Solvent-based Industrial Coatings

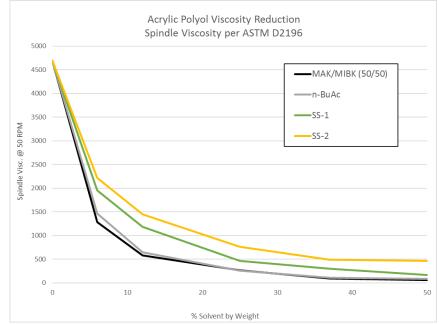
- 4 soy vs. 2 petroleum dispersants
- Coating formulations
 - Soy-alkyd semi-gloss enamel
 - Bis Phenol A epoxy primer

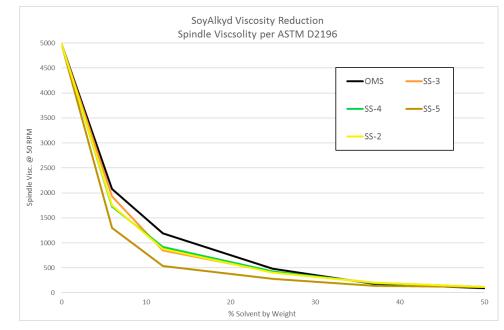
Tests

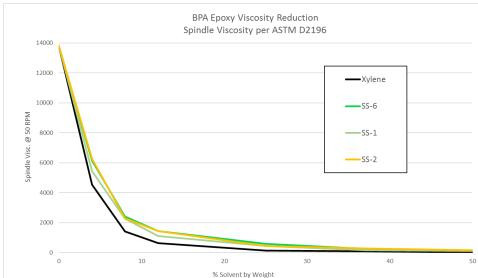
- Fineness of dispersion
- Gloss
- Opacity
- Color acceptance
- Package stability

Soy Dispersants for Solvent-based Industrial Coatings

Property	Test Method	Alkyd Paints	2K Epoxy Primers
Fineness of Dispersion	ASTM D1210	+	+
Gloss	ASTM D523	+	+
Opacity/Contrast Ratio	ASTM D2805	+	+
Color Acceptance	ASTM D5326	++	n/a
Package Stability	ASTM D1849	+	++


Soy alkyd – equivalent w/ improved color acceptance BPA epoxy – equivalent w/ improved package stability


Part 4: Soy Solvents for Industrial Coatings


				Levels of Incorporation (% Additional Solvent by Resin As-Supplied Weight)				:)		
Resin Type	Petroleum Solvents	Soy Solvents	0	4.17	6.25	8.33	12.5	25	37.5	50
	n-BuAc	SS-1								
Acrylic Polyol	MAK/MIBK (50/50)	SS-2	х	-	х	-	x	х	х	х
		SS-2								
		SS-3								
		SS-4								
Soy Alkyd	OMS	SS-5	х	-	х	-	x	x	х	Х
		SS-1								
		SS-2								
ВРА Ероху	Xylene	SS-6	x	х	-	x	x	x	x	х

- Key benefit VOC reduction
- 6 soy vs 5 petroleum solvents
- 3 Resin systems
 Acrylic polyol
 - ✓Soy-alkyd
 - ✓BPA epoxy
- Viscosity reduction vs. % concentration

Soy Solvents – Concentration vs. Viscosity

Expected Use Level ~40%

Soy Solvents for Industrial Coatings

Summary with resin & solvent blends

- Acrylic polyol not equivalent at 20%
- Soya alkyd equivalent at 30-35%
- BPA epoxy equivalent at 40%

• Next steps

- Formulate into coatings
- Possible replacement for PCBTF

SUMMARY: Reduce Your Carbon Footprint with U.S. Soy

- Renewable, biobased carbons
- Low carbon footprint
- Diversity of applications
 - Enables chemistries for high performance applications
 - Low EH&S impact
- Economical
- Abundant supply

Kris Weigal Omni Tech International Table Top #25

708-625-7071 kweigal@omnitechintl.com

Read Our Article: Development of More-Sustainable Water-Based DTM Coatings, Part II *Featured in the September, 2024 issue of PCI Magazine*

