

LED Curable Dichroic Coatings Based on Brush Block Copolymers

Julie C. Hostetter September 6, 2024

INTRODUCTION

Outline

- Color Today
- Inspiration: Next Generation Color
- Science: Self-Assembly
- Formulation: Practical Considerations

Coloring Our Everyday Objects is a Complicated Process

Colorants Today are:

Polluting

Complex to Produce

Not Differentiated

AS SEEN IN NATURE

Taking Inspiration From Nature To Build the Next Gen. of Color

Producing the Entire Light Spectrum From One Material vs. Several

A Traditional Color (Pigment or Dye)

Made from many different raw materials and unique individual processes that absorb light.

Different Colors ... Different Chemistry

Structural Color Resin

Made from the same core material and one process that reflects light (visible, UV, infrared).

Different Colors ... Same Chemistry

Self Assembly:

A New Paradigm to Commercial Structural Color Coatings

Enabling Easy to Apply Structural Color Coatings: A Structure-Property Relationship

Linear Copolymers

- Highly entangled
- Slow self-assembly
- Small domain sizes

Brush Block Copolymers

- Low entanglement
- Rapid self-assembly
- Large domain sizes

DESIGN

Manufacturing of Easy-To-Apply Structural Color Coatings

Solvent-Based Self-Assembly

Powdered Form

Solvated Form

Wet Coating

Dried Coating

Transition Away from Annealing:

A Fundamentally New Approach to Self Assembling Systems

- Major limitations to evaporative / solvent-based annealing system:
 - Time
 - Evaporation / Equipment
 - EH&S considerations

- Approach
 - Replace solvents with industry accepted UV monomers
 - Reduce time to generate vibrant colors from $\min \rightarrow \sec$
 - Eliminate evaporation/drying

Gen 2: UV Curable Inks

Powdered Form

Fully Dissolved

After Application

After Curing

Brush Block Copolymer (BBCP) aka Structural Color Copolymer (SCC) as Received A mild to vivid color can be

observed depending on solids loading of SCC due to pre-assembly and ordering of the SCC.

Immediately after application, the applied ink will be a mild to vivid color depending on solids loading of SCC.

Surface

Expected volumetric shrinkage with crosslinking/curing. Spectral shift to shorter wavelengths.

Practical Formulation Considerations

• BBCP must be present in significant loading (~11-25% by wt)

- High viscosity

- Higher loading of mono-/di-acrylates than typical screen inks
- Recipe modifications across substrates

FORMULATION

Wavelength Averaging: Cross-Blending Blue and Red

Wavelength Averaging: Cross-Blending Blue and Red

Wavelength Averaging – An Analysis

Brush Block Copolymer Blending

Visual Assessment of Iridescence

16 🧕

Goniometric Assessment of Iridescence

Interference Angle Color Performance

17 🔪

Thank you!

Let's Connect:

S cyprismaterials.com

julie@cyprismaterials.com

اinkedin.com/in/julie-hostetter-211237ab گُ

