

Bio-hybrid Epoxy Diluent -Alternative to Nonylphenol

Isabella Weinland Synthesis Chemist- Coatings Neville Chemical Company

Neville Chemical Company Introduction

- Major producer of substituted phenol resins
- Strategically positioned to ship FTL, TW, Rail & Barge

Neville Chemical Company Introduction- Coatings and More

Coatings

- Marine coatings
- Industrial and maintenance
- Wood care and stains

Adhesives

- Packaging
- Tapes and labels
- Woodworking and joinery

Construction

- Construction Adhesives
- Asphalt modification
- Concrete Cure & Sealants

Rubber

- Natural and synthetic rubber
- Belts and hoses
- Industrial products
- Rubber compounding

Custom Solutions

- R&D Support
- Lab > Pilot > Production

Ink

- Coldset inks
- Dispersion vehicles
- Flushing vehicles
- Metallic inks

Resin Family to Promote Sustainability in the Coatings Industry

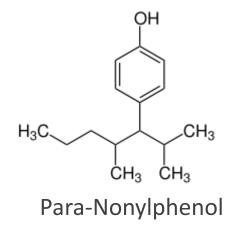
Properties	Novel Resin	Neville Biohybrid Resin for Coatings #2	Neville Biohybrid Resin for Coatings #3	
Purpose	Replacement to Nonylphenol	Epoxy film performance enhancement	Plasticizer and pot life extender	
Gardner Color (Straight)	3	3	1	
Appearance				
Brookfield Viscosity@ 25°C (cps)	500	100	50	
Hydroxyl Number	190	104	34	
Non-Volatile, Wt.%	85%	90%	75%	

NEVIL

Significance of Nonylphenol in Epoxy Coatings

Accelerator

Reduces cure time


Plasticizer

- Improves mechanical properties:
 - Flexibility
 - Adhesive strength
 - Elongation

Workable Viscosity

Film appearance

Light Color

Nonylphenol Environmental Effects

Regulatory Constraints

- European Union banned use and production of nonylphenol
- Nonylphenol is strictly monitored in Canada and Japan for harmful effects
- Increased attention in the U.S.
 - > EPA proposed a Significant New Use Rule (SNUR) under the Toxic Substances Control Act
 - Applies to 15 nonylphenols and nonylphenol ethoxylates

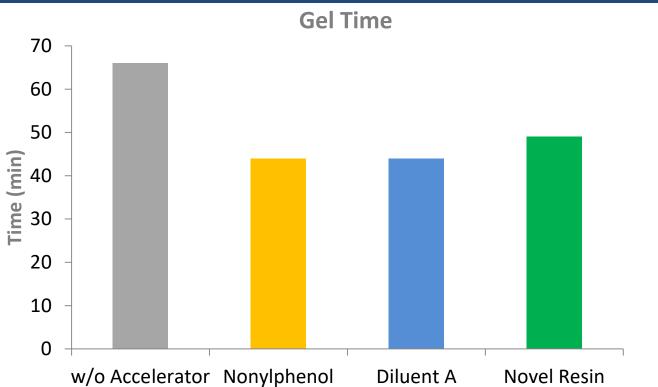
Environmental Impact of Nonylphenol

- Persistent in aquatic environment
 - Highly toxic to aquatic organisms
- Bioaccumulative
 - > Weeks/months for nonylphenol to breakdown in the environment
- Endocrine Disruptor and Xenoestrogen
 - Interferes with hormonal system of numerous organisms
 - Reproductive toxin

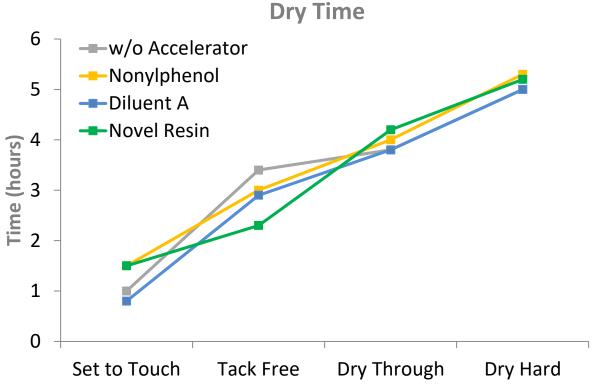
Novel Resin Replacement Capabilities

- > Accelerator
 - Reduces cure time by 25%
- Film Properties
 - Adhesion \succ
 - Flexibility \succ
 - Chemical resistance \geq
 - ➢ Hardness
- Light Color
 Workable Viscosity
- Lowers VOCs of formulation

Resins of Interest- Experimental Study

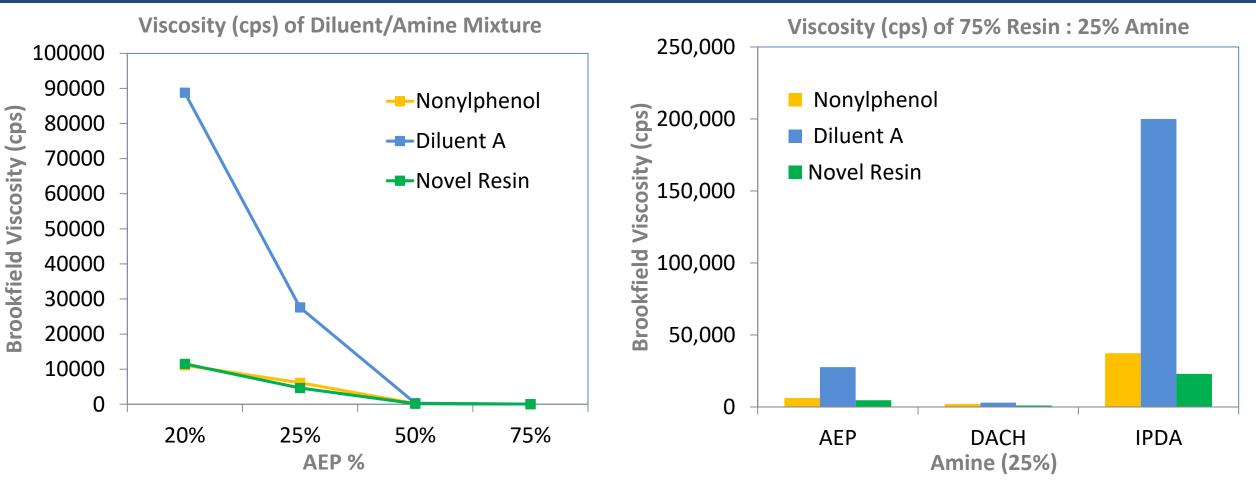

Properties	Test Method	Nonylphenol	Diluent A (market alternative)	Novel Resin
Gardner Color (Straight)	ASTM D1544	1	3	3
Appearance	Visual	Clear liquid	Pale yellow liquid	Pale yellow liquid
Brookfield Viscosity@ 25°C (cps)	ASTM 2196	1200	800	500
Hydroxyl Number	ASTM D1957	225	230	190
Non-Volatile, Wt.%	ASTM D2369	46%	75%	85%

Experimental Study


- 2k Epoxy Resin
 - BPA/epichlorohydrin based epoxy (Epon 828 & Epon 1001-X-75) with polyamide hardener (Epicure 3125)
- 2K Epoxy Control (with 0% resin) compared to 2K Epoxy with 5% Nonylphenol, 5% Diluent A, and 5% Novel Resin
 - Gel time, dry time, and 6 film performance tests.
- Resins also evaluated by their viscosity stability with three different amines

Key Performance Metric #1- Accelerator

- Novel resin accelerates the cure time of the epoxy resin by 25%
 - This is incredibly close to nonylphenol's acceleration capabilities
- Tested via Shyodu Standard Gel Timer
- 2k Epoxy Resin (with 0% or 5% Resin)
 - BPA/epichlorohydrin based epoxy with polyamide hardener


- Novel resins maintains a dry time very similar to that of nonylphenol
- Tested via BYK Drying Time Recorder, ASTM D5895
 - 5% Resin in 2K Epoxy System

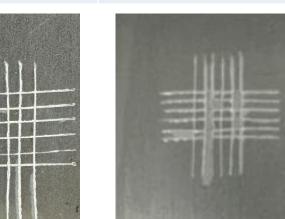
Key Performance Metric #2- Viscosity Stability

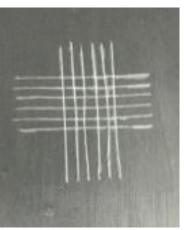
AEP (Aminoethylpiperazine)

DACH (1,2-Diaminocyclohexane)IPDA (Isophorone diamine)

• The Novel Resin showed incredible viscosity stability with varying concentrations of AEP

• The Novel Resin showed persistent viscosity stability with three different amines tested (AEP, DACH, and IPDA)


Epoxy Film Performance- Adhesion


Test Result	Control	Nonylphenol	Diluent A	Novel Resin
Percent Area Removed	2%	48%	16%	4%
Adhesion Rating	4B	1B	2B	4B

Test Conditions

- Epoxy film cured for 7 days
 - 2K Epoxy Resin (5% Resin except Control)
 - BPA/epichlorohydrin based epoxy with polyamide hardener
 - 3mil film on cold rolled steel
- Crosshatch Adhesion Test
 - ASTM D3359
 - 5B is the highest rating, 0B is the lowest (>65% film loss)

<u>Conclusion</u>

Novel Resin promotes improved adhesion to steel substrate

Epoxy Film Performance- Flexibility

Test Conditions

- Mandrel Bend Test
- ASTM D522
- To measure elongation, the bend time is 15s. To determine crack resistance, the bend time is 1s.
- Epoxy film cured for 7 days
 - 3mil film thickness
- Resin dosage is 5%
- Substrate is cold rolled steel

<u>Conclusion</u>

 Novel Resin has equal elongation effects, but superior crack resistance to nonylphenol in the cured epoxy film

Test Result	Control	Nonylphenol	Diluent A	Novel Resin
Elongation (slow bend)	Pass	Pass	Pass	Pass
Crack Resistance (fast bend)	Pass	Fail: 5" delamination & film fracture	Fail: 3.5" delamination & film fracture	Pass

Bio-hybrid Epoxy Diluent - Alternative to Nonylphenol

Epoxy Film Performance- Chemical Resistance (MEK)

Test Results	Control	Nonylphenol	Diluent A	Novel Resin
Rating after 100 MEK double rubs	Pass	Pass	Pass	Pass
 <u>Test Conditions</u> MEK Chemical Resistance ASTM D5402 Pass: no film penetration after 100 double rubs Copper sulfate is used to determine penetration 				

- Edge breakthrough is due to edge thinner film
- Epoxy film cured for 7 days
 - 3mil film thickness
- Resin dosage is 5%
- Substrate is cold rolled steel

<u>Conclusion</u> Novel Resin has equal MEK chemical resistance capabilities to nonylphenol and control

Epoxy Film Performance- Impact Resistance and Hardness

Test Results	Control	Nonylphenol	Diluent A	Novel Resin
Impact Resistance	>96 in-lbs	>96 in-lbs	>96 in-lbs	>96 in-lbs
Pencil Hardness	н	Н	Н	н
 <u>st Conditions</u> Gardner Impact Resistance • ASTM D2794 • >96 in-lbs is the highes		6		

- Pencil Hardness
 - ASTM D3663
 - Rating from 6B (softest) to 6H (hardest)

rating with equipment used

- Epoxy film cured for 7 days
 - 3mil film thickness
- Resin dosage is 5%
- Substrate is cold rolled steel

<u>Conclusion</u>

Novel Resin elicited equal impact resistance and film hardness in epoxy compared to nonylphenol and control

Pencil Hardness Scale 6B 5B 4B 3B 2B B HB F H 2H 3H 4H 5H 6H 7H 8H 9H Softer Harder

Conclusion: Resin Performance Evaluation

	Film Performance Metric	Control	Nonylphenol	Diluent A	Novel Resin
	Gel Time	66 min	^	^	1
	Dry Through Time	4 hours			
	Viscosity Stability	N/A		♥	
	Adhesion to substrate	4B	♥	♥	
	Elongation	Pass			
	Crack Resistance	Pass	↓	V	
	MEK Chemical Resistance	100+			
	Impact Resistance	>96 in-lbs			
	Pencil Hardness	Н			
Ir	Improved Performance				

September 6, 2024

Thank you!

<u>Presenter</u> Isabella Weinland Synthesis Chemist- Coatings

<u>Acknowledgements</u> Research conducted under Dr. Liwei Yu, R&D Director at Neville Chemical Company

For more information, please visit us at https://www.nevchem.com/contact-us/ or Booth #29

> Neville Chemical Company 2800 Neville Road Pittsburgh, PA 15225-1496

412-331-4200

nevchem.com