

Modern techniques in studies of interfacial behavior

Hieu Ngo, DataPhysics Instruments USA

Emulsion and Dispersion Stability Device

- Instrument for analysing stability of emulsion and dispersion
- → Temperature could be controlled to accelerate aging and simulate real-world conditions
- → Uses a light-scattering technique to detect movement of particles over time, position, and temperature.

Classification of multi-component systems

→ homogeneous mixtures

mixed at the molecular level ("molecularly disperse") → one-phase

- → gas mixtures, alloys (metal + metal), solutions (solid, liquid or gas in liquid)
- → heterogeneous mixtures (= dispersions) different compounds in distinct areas ("coarsely disperse") → multi-phase
 - → solid in solid: blend (e.g. granite), muck (e.g. flint)
 - → gas in solid: rigid foam (e.g. sponge)
 - → solid in liquid: suspension (e.g. slurry)
 - → liquid in liquid:
 - → gas in liquid: foam
 - → solid in gas:
 - → liquid in gas:
- : emulsion (e.g. milk) foam (e.g. beer foam)
 - smoke, dust (e.g. cigarette smoke) steam, vapour, fog

The Device is designed to investigate liquid heterogeneous mixtures (i.e. suspensions, emulsions, foams) regarding their stability – or rather their de-mixing/destabilization is monitored...

Scan Tower ST

Comprises:

- → Thermostatable measuring chamber into which the sample container is inserted from the top
- → Measuring chamber lid with electric motor (controlled via touch display or software)
 - Temperature sensor in the sample chamber
- → Scanning plate and associated electronics (stepper motor...)
- → Protective liquid collection tray above electronics

Ports: (from bottom to top)

- → Liquid connections for cooling fluid/to thermo- or cryostat
- → Gas connection for purging gas against condensation
- 9.7 cm \rightarrow Drain for liquid in the collection tray

Scanning plate: Measuring principle

→ Centerpiece of the scan tower!

Destabilisation mechanisms of fluid mixtures

- particle size increase (often irreversible)
 - → coalescence (merging of particles) e.g. breakup of an emulsion or foam
 - → agglomeration, aggregation
 - e.g. precipitation of salt from brine solution

driving force:

- reduction the of interfacial area between different phases (which reduces the energy of the system due to the interfacial tension)
- particle migration (usually reversible)
 - sedimentation e.g. solid particles in slurry
 - \rightarrow creaming
 - e.g. fat droplets in milk

driving force: gravity acting on phases with different density

→ both mechanisms are recognized by optical analysis!

l o c a l : concentration changes

global

Sedimentation of polystyrene

Time [hours]

Optical analysis: Concentration dependence

increasing volume concentration φ:

- → transmission decreases
 - → more and more particles obstruct light passage
- → backscattering increases
 - → more particles → higher backscattering potential

Optical analysis: Particle size dependence

 \rightarrow at constant volume concentration ϕ the number of particles decreases with increasing particle diameter!

- → first particles become big enough to be encountered by the incident light
 - ightarrow decreasing transmission, increasing backscattering
- ightarrow then there are big but merely few particles and light is likely to just pass by
 - ightarrow increasing transmission, decreasing backscattering

Example 1: Polymer Solutions

- Customer Information: Developer of polymers that are applied and processed as an aquatic solution to coat some surface by treatign it with the solution and setting it for drying
- → Goal: Determination of the maximum polymer concentration that is table over a certain time.
- → Samples: Customer sent us 2 samples with different concentrations of the polymer (15,8% polymer content and 19% polymer content

Experiment: Transmission measured over 5 days at room temperature for both samples

Evaluation with peak height method.

In the sample with 19% concentration, increasing cloudiness was observed over time.

Example 2: Motor Oil

- \rightarrow Customer information: Developer of motor oils
- → Process goal: Development of special oil with increased stability up to 60°C temp
- → Samples for testing: 3 samples with different additives.
- → Testing goal: Identification of the most stable product with the DataPhysics MS20

Experiment: Transmission measured for 3 days at 60 °C

Formulation C shows the lowest stability fast change especially in the first 12 h. Stability Trend: B>A>C

Example 3: Seasonings for processed meat

- \rightarrow Customer Information: Developer of food additives
- → Goal: Increase shelf stability of a seasoning by addition of different emulsifiers
- → Samples: Customer provided 2 samples in with different emulsifiers

Experiment: Backscattering measured for 1 day

at room temperature for samples 1-2

Samples show some sedimentation on top and a possible coagulation

Analysis Software : New look of Analysis Methods

Various filtering methods live change of filter width

Simultaneous evaluation of transmission and backscattering possible

Choice how new analysis should be displayed → Possibility for direct comparison of evaluated results

Determination of Stability Index (SI) within the Values method

- → Stability of the system independent of the destabilization mechanism
 - → Which system is more stable?

Graphical representation of 'Intensity vs. temperature'

→ Influence of temperature on backscattering and transmission intensity can directly be displayed

→ Sample destabilization with temperature is irreversible!

- → Simple insulating sleeve of the tower allows temperature range for the measurement starting from -10 °C and up to 80 °C.
- -> Insulation of the tower makes it more heat efficient in the full range of temperatures.
- → Measurements below 30 °C require external cooling circulator and dry gas purging to prevent condensation inside the tower.

Backscattering of two samples cycling between -10 and +60°C

Increased sensitivity to small size particles by modified wavelength light source

- \rightarrow 870 nm LED light source replaced with 470 nm.
- → Changes made to LED light path slit.
- \rightarrow Software/firmware updates for automated detection of the measurement tower type.

Increased sensitivity to small size particles by modified wavelength light source

- → 1. Same sample of SiO₂ (particle size around 60 nm) with 470 nm tower shows stronger affect on transmission intensity in comparison to 870 nm tower.
- → 2. 470 nm tower scans of the same sample show decrease in transmission intensity in just in 7 min, while 870 nm tower has much less change.

Increased sensitivity to small size particles by modified wavelength light source.

Polystyrene microsphere suspension in water, density 0.998 g/cm³, viscosity 1.002 mPas, absolute values of transmission and backscattering measured every 13 sec for 40 seconds.

Table 1: Properties of the polymer microsphere suspensions								
Particle size	Volume concentration (%)							
110 nm	-	-	1	-	-	10	-	-
190 nm	-	-	1	-	-	10	-	-
330 nm	-	-	1	-	-	10	-	-
420 nm	-	-	1	-	-	10	-	-
540 nm	0.1	0.5	1	2	4	10	20	30
740 nm	-	-	1	-	-	10	-	-
1.2 μm	-	-	1	-	-	10	-	-
2.3 μm	-	-	1	-	-	10	-	-
3.2 μm	-	-	1	-	-	10	-	-
4.3 μm	-	-	1	-	-	10	-	-

Calculation of average particle size and particle size distribution based on particle migration due to density difference.

Coating sample with different size TiO₂ powder

 \rightarrow White paint sample diluted 200 times with water

 \rightarrow Goal: determine particle size distribution

Coatings Trends & Technologies SUMMIT

