A bespoke, non-additive approach to antimicrobial coatings

Emma G. Wrigglesworth (PhD) Inhibit Coatings - Technical Lead Coatings Trends & Technologies Summit 2024

Inhibit Coatings is a New Zealand technology company that develops advanced materials, founded on the back of Dr Eldon Tate's PhD research under Prof. Jim Johnston at Victoria University of Wellington.

Our next generation of antimicrobial materials improve the wellness of the people interacting with them, while providing a solution that is:

More effective, longer lasting, cost effective, and sustainable.

Inhibit's goal is to provide safe, long-lasting protection for people, products, and the environment.

The Problem

Hospital acquired infections are one of the top 10 leading causes of death in the USA.

Butler, Ashley. Infection Control Today (2023).

The estimated direct annual cost of treating HAIs in the United States ranges from \$ 28.4 billion to \$ 45 billion.

Gidey, Kidu, et al. Plos one 18.2 (2023): e0282141.

The Problem

Jensen Farms outbreak

Cross-contamination of bacteria to food from the processing environment

Current Antimicrobial Coatings

The antimicrobial solutions currently available rely on the *controlled leaching of additives* - results in *significant drawbacks*:

Limited Lifetime

They stop working when the active ingredient has washed out (days, weeks, or months)

Environmental Impact

Release of toxic active ingredient into waterways and environment

Physical Properties Impact

Only limited amounts of additive can be used before adverse effects on the coating

Inhibit Coatings has unique nanotechnology that has been proven to eliminate these drawbacks

Next-Generation Antimicrobial Technology

Non-leaching: silver is bound directly to the resin

Proven broad-spectrum antimicrobial activity Effective against bacteria, viruses, superbugs, fungi

Safe to use and interact with Non-toxic, non-irritating, not a sensitizer

Scaleable and cost-effective

Two Approaches:

Ready-To-Go Offering

Waterborne polyurethane silver composite

E	•	
8=	•	
	•	

Highly optimized & extensively characterized

Antimicrobial & leaching data available

Bespoke Solutions

Customized solution - using your resin system

Polyurethanes, acrylates, epoxies, polyamides

Two Approaches:

Ready-To-Go Offering

Waterborne polyurethane silver composite

Highly optimized & extensively characterized

Antimicrobial & leaching data available

Bespoke Solutions

Customized solution - using your resin system

Polyurethanes, acrylates, epoxies, polyamides

Advantages of Bespoke Approach

Cost Efficiency As low as \$0.0033 of active ingredient per kg of product

Intellectual Property & Competitive Advantage

Supply Chain Reliability & Inventory Management

How it works:

Paint, coating, or other polymerbased system

Apply antimicrobial technology

Base resin used in coating

- Unformulated -

How it works: Application of antimicrobial technology to base resin

Examples of Functionality Required:

> Amines/amides Carboxylic acids Esters/Ketones/Al dehydes Alcohols

Examples of Suitable Resins:

Polyurethanes Acrylates Epoxies Polyamides

Waterborne Solventborne 100% Solids

How it works:

Paint, coating, or other polymerbased system

Apply antimicrobial technology

Characterization & optimization

Base resin used in coating - Unformulated -

Functionalized, silver-resin composite

Characterization Techniques

Characterization: UV-Visible Spectroscopy

Localized Surface Plasmon Resonance

Characterization: UV-Visible Spectroscopy

UV-vis peak red-shifts with increasing particle size

Relationship between peak width and particle size distribution

Characterization: Electron Microscopy

Transmission Electron Microscopy (TEM)

Scanning Electron Microscopy (SEM)

Characterization: Electron Microscopy Energy Dispersive X-ray Spectroscopy (EDS)

Characterization: Silver Leaching Measurement

In-House Testing

- Coating immersed in water for a set
 period
- Silver leached into water measured via AA spectroscopy:

Independent Testing

• Textile Coating

- US EPA Method 1311 (TCLP) Method
- Full immersion & agitation at low pH for 18 hours
- Silver leaching measured via ICP-MS

< 100 ppb/g silver loss

≤ 0.1% silver loss

Characterization: Antimicrobial Activity

JIS Z 2801 Standard

- Quantitative
- Tests the ability of antimicrobial surfaces to inhibit the growth of microorganisms, or kill them
- Industry standard for antimicrobial hard surface performance

Characterization: Antimicrobial Activity

Antibio bacteri	tic-resistant a: MRSA	Archi hospi	tectural paint tals	for JIS Z 2	2801 > r	99.9% eduction
Bacteria: <i>E. coli</i>	Textile application	AATCC 100	99.999% reduction	Control		Treated textile
	Virus: humar coronavirus	ו	Coating	JIS Z 2801	99.86% reductio	on

Independently tested by Microchem & MIS

Characterization: Antimicrobial Activity

Independently tested by MIS

Characterization: Other

Depending on the application, other characterization can include:

- XRD, FTIR
- Toxicology
- ISO 90993 Testing: Cytotoxicity, Hemocompatibility
- Physical Testing

How it works:

Paint, coating, or other polymerbased system

Apply antimicrobial technology

Characterization & optimization

Base resin used in coating - Unformulated -

Functionalized, silver-resin composite High concentration of active ingredient: can be used as an additive

Concentration & Color

Photographs of silver-resin composite applied to textile:

How it works:

Paint, coating, or other polymerbased system

Apply antimicrobial technology

Characterization & optimization

Base resin used in coating - Unformulated - Functionalized, silver-resin composite

Scale up

Scale-Up

- From small lab samples to gallonsized batches for feasibility testing
- In-house capability: 25 kg pilot-scale batch size
- Ability to scale further with partner support

Summary: Bespoke Antimicrobial Coatings

Range of different polymer types

Tech is non-leaching, highly effective, & safe

Advantages over ready-to-go additive solutions

Inhibit Coatings

MORE INFORMATION / www.inhibitcoatings.com CONTACT / emma.wrigglesworth@inhibitcoatings.com