Ingevity

Polycaprolactone Polyols Designed for Polyurethane Dispersions

Chuck Jones, PhD

Market Segment Manger – Coatings

AGENDA

- 1. Polycaprolactone (PCL) Polyols
- 2. Polyurethane Dispersions using PCL
- 3. Recently Developed PCL Technologies
- 4. Results from Application Testing
- 5. Summary of Findings

1: See page 115 of our 2023 Annual Report and 10-K for definitions and reconciliations of these non-GAAP financial measure:

Manufacturing site count and employee count excludes employees at our CTO-based manufacturing facility in DeRidder, Louisiana, which will be closed in 2024.

. In November of 2023, we announced an initiative to reposition our Performance Chemicals segment to enhance profitability and earnings stability, which will result in the reduction, and in some cases exit, of historical end-use markets of our Industrial Specialties product line such as adhesives, publication inks, and oilfield. See page 5 of our 2023 Annual Report and 10-K for more information.

ingevity

Polycaprolactone (PCL) Polyols

- PCL polyols made via ring opening polymerization
- No by-products
- Acid value and water content can be kept very low
- Fully aliphatic backbones
- All hydroxyls are primary
- Very narrow polydispersity

Polycaprolactone (PCL) Polyol Uses in Coatings

 Radical Cure

```
Cationic
Cure
```


Building

• 2K PUD

Comparison of PUD Polyol Technologies

PCL polyols – no compromise on processing, performance or durability

Polyurethane Dispersions (PUDs) With PCL

PCL Polyols for Polyurethane Dispersions

PCL Polyol Feature	Benefit in final PUD
Low glass transition temperature	Excellent low temperature flexibility
Narrow polydispersity	Good reproducibility of coating properties
Low viscosity	Low/Zero VOC and ease of processing
UV & hydrolytic stability	Weather stable
Aliphatic polyester backbone	Excellent mechanical and durability profile

Tensile Testing – 2000 MW

Excellent strength at break with great flexibility

Accelerated Weathering

PCL outperforms PTMEG for UV and Adipate for Hydrolysis

Resistance to Abrasion – 1000 MW Diols

Taber Abrasion for Crosslinked PUDs

CS10 wheels, 500g load, 1000 cycles

Recently Developed Diols for PUDs

Newly Developed PCL Diols

Harder than other PCL diols

Better Chemical Resistance

Faster Processing than PCD diols

Stronger Flexibility than PCD diols

Experimental 2000 MW Diol PUD Formulations

Raw Material	Developed PCL PUD	PCD PUD	PCL PUD
Developed PCL Diol	23.6		
Polycarbonate Diol		22.8	
PCL Diol			22.0
DMPA	2.3	2.3	2.2
Hydrazine	0.8	0.8	0.8
Catalyst	8 ppm	8 ppm	8 ppm
Butyl Pyrrolidone	4.5 (to 90% Solids)	7.1 (to 85% Solids)	4.3 (to 90% Solids)
DMEA	1.6	1.6	1.5
Water	68.0	63.9	64.0
Defoamer	20 ppm	20 ppm	20 ppm
Cycloaliphatic Diisocyanate	14.9	14.9	14.3
Total Parts by Weight	100	100	100

Anionic PUDs with Ratios of 2.00/0.40/0.60 H₁₂MDI/Polyol/DMPA

Experimental 2000 MW PUD Properties

Property	Developed PCL PUD	PCD PUD	PCL PUD
Total Solids Calculated (%)	36.00	36.00	36.00
рН	8.46	8.66	8.60
Prepolymer Viscosity at 90°C	3,000	13,500 at 90% 11,500 at 85%	3,000
PUD Viscosity (cps)	300	160	150
Appearance	Semi-Trans	Semi-Trans	Semi-Trans
Density (lb/gal)	8.76	8.66	8.60
VOC (%)	5.30	7.63	5.32
VOC (g/L)	145.27	198.59	144.69

2000 MW PUD Chemical Resistance

2000 MW PUD Film Properties

Gloss Units

Direct Reverse

PCD PUD

PCL PUD

Ingevity

Dev. PCL PUD

Experimental 1000 MW PUD Formulations

Raw Material	Developed PCL PUD	PCL PUD
Developed PCL Diol	14.5	
PCL Diol		14.2
TMP	0.26	0.18
DMPA	1.6	1.7
Ethylene Diamine	0.6	0.6
Aminoethylethanol amine	0.7	0.7
Adipic Dihydrazide	0.6	0.6
37% Formalin	0.3	0.3
Catalyst	6 ppm	6 ppm
Dipropylene Glycol Dimethyl ether	4.9 (to 85% Solids)	4.9 (to 85% Solids)
Triethylamine Neutralizer (1.0 equiv. on DMPA)	1.2	1.2
Water (to 30% Dispersion Solids)	64	64
Defoamer	20 ppm	20 ppm
IPDI	11.6	11.8
Total Parts by Weight	100	100

Anionic PUDs with Ratios of 1.80/0.48/0.42 IPDI/Polyol/DMPA

18

Experimental 1000 MW PUD Properties

Property	Developed PCL PUD	PCL PUD	
Total Solids Calculated (%)	31.67	31.46	
рН	7.82	8.28	
Prepolymer Viscosity at 83°C (cps)	10,000	8,000	
PUD Viscosity at 25°C (cps)	20	20	
Density at 25°C (lb/gal)	8.720	8.706	
Appearance	Clear/Semi-Trans	Clear/Semi-Trans	

1000 MW PUD Chemical Resistance

1000 MW PUD Hardness Development

Coatings Application Testing

Formulations for Coatings Studies

Raw Material	Formulation A	Formulation B	Formulation C
Commercial PUD (40% NV)	93.1		
1000 MW Developed PCL PUD (31% NV)		96.1	
1000 MW PCL PUD (31% NV)			96.1
Wetting Agent	0.3	0.3	0.3
Defoamer	0.3	0.3	0.3
Rheology Modifier	0.3	0.3	0.3
Butyl Glycol	6.0	2.0	2.0
Deionized Water	4.0	1.0	1.0
Total Parts by Weight	100	100	100

Hardness Development

Stain Resistance of Coatings

Stains were graded using the following method:

- 1. Softening and delamination (worst)
- 2. Severe softening and damage to coating
- 3. Severe staining
- 4. Slight stain
- 5. No change (best)

- 1. Each coating was applied onto a Laneta card, and left to air dry for specified time
- 2. A drop of deionized water was applied to each coating, left for 30 minutes, and then removed using a soft cloth before evaluation

Summary

Ingevity

Summary of Findings

PUDs from the Developed PCL Polyols

- Harder Films that Maintain Flexibility
- Better Chemical/Stain Resistance
- Faster Processing, Capable of Low/Zero VOC
- Stronger Impact from 1000 MW Diol

Chuck Jones <u>Chuck.Jones@Ingevity.com</u> (215) 499-2356

