

### Improving Water Resistance of Pure Acrylic Emulsions with Nonionic Reactive Surfactants







## **COATINGS SUSTAINABILITY**









## Waterborne Coatings

Įnd Qrama



#### EFFECT OF WATER-SOLUBLE SPECIES ON PERFORMANCE OF WATERBORNE PAINT



# WHY DOES IT HAPPEN?







Vanderhoff et. Al., J. Pol. Sci. 1973, 41, 155-174.



## STRATEGY





# ALL-ACRYLIC LATEX ADVANTAGES





#### Coatings Trends & Technologies

## ALL-ACRYLIC LATEX DISADVANTAGE

**Colloidal Stability** 



Source: M. El-Aasser and P. Lovell, Emulsion Polymerization and Emulsion Polymers, Wiley, West Sussex, 1997.



## **OBJECTIVES**









## **TWO STEP PROCESS**





Asua et. Al., Langmuir 2003, 19, 3212 - 3221.

## **Emulsion Polymerization**



INDORAMA

#### SEEDED SEMI-BATCH PROCESS



#### **Starting Formulations**

|                                                   | Components                | w/w   |
|---------------------------------------------------|---------------------------|-------|
| Emulsion<br>Polymer seed<br>(Previously prepared) | Methyl Methacrylate (MMA) | 0.75  |
|                                                   | Butyl acrylate (BA)       | 0.72  |
|                                                   | Methacrylic acid          | 0.03  |
|                                                   | Anionic surfactant*       | 0.38  |
|                                                   | Ammonium persulfate       | 0.004 |
| Pre-emulsion                                      | Methyl Methacrylate (MMA) | 23    |
|                                                   | Butyl acrylate (BA)       | 22    |
|                                                   | Methacrylic acid          | 1     |
|                                                   | Anionic surfactant*       | TBD   |
|                                                   | REACT N1                  | TBD   |
| Thermal Initiator                                 | Ammonium persulfate       | 0.15  |
| Ox-redox<br>Initiator                             | Oxidizing Agent           | 0.02  |
|                                                   | Reducing Agent            | 0.02  |

\* Sodium salt of lauryl ether sulfate



#### EFFECT OF SURFACTANT COMPOSITION ON COAGULUM FORMATION IN EP

Coagulum in reactor Thermocouple Impeller

Dispersed coagulum in latex 75 wt% REACT N1 25 wt% Anionic Surfactant



800 ppm

67 wt% REACT N1 33 wt% Anionic Surfactant



834 ppm

50 wt% REACT N1 50 wt% Anionic Surfactant



805 ppm

INDORAMA

## GENERAL PROPERTIES OF LATEXES

|                                     | Final latex | Final latex                |
|-------------------------------------|-------------|----------------------------|
| Properties                          | 2 phm AS    | 1 phm REACT N1<br>1 phm AS |
| рН                                  | 8           | 8                          |
| Solid Content<br>(wt%)              | 47          | 46                         |
| <b>Particle Size</b><br>(nm)        | 92          | 101                        |
| Viscosity<br>(cP, 25 °C)            | 1025        | 618                        |
| Surface<br>Tension<br>(mN/m, 25 °C) | 40          | 39                         |



## **EFFECT OF REACT N1 ON STABILITY**

Coatings Trends & Technologies

**Coagulum formed in Mechanical Stability** 





## INCORPORATION OF REACTIVE NONIONIC SURFACTANT

Surfactant Incorporation = Total Surfactant - Free Surfactant







Coatings Trends & Technologies

### **FILM FORMATION**



INDORAMA

↑ Coalescence





Vanderhoff et. Al., J. Pol. Sci. 1973, 41, 155-174.



Latex Films with 2 phm of ULTRAFILM<sup>®</sup> 5000 cast on Leneta, dried at 25 °C, 60 % RH, 7 days

**AFM** 





INDORAMA

### WHITENING

#### Latex films with 2 phm of ULTRAFILM<sup>®</sup> 5000 Immersed in water at 25°C after 4 days



Commercial



AS / REACT N1 (1:1)

### WATER ABSORPTION



#### Latex films with 2 phm of ULTRAFILM<sup>®</sup> 5000 Immersed in water at 25°C





# SUSTAINABILITY ACHIEVEMENTS





Environmental and social performance

Efficient use of **resources** 



Durability of materials

Biobased alternatives
HSE friendly formulations
Free of GHS hazard
pictograms

High performance in the application Excellent control of stability and particle size High level of incorporation

Coalesced films

Enhance short & longterm performance



Įndoramą



## Thank you!!! Please visit us at Table #46.



#### Contact



#### Bruno Dario

Research Scientist II – CASE & Performance Products

🜭 +1 (346) 413-1152 (mobile)

🐱 bruno.dario@us.indorama.net

#### Indorama Ventures – Indovinya

**Q** 8401 New Trails Dr., Suite 150, The Woodlands, TX

**\** +1 (346) 380-6573

http://indovinya.indoramaventures.com/

