

Next Generation Nano-structured Material Derived from Ocean Waste

For Epoxy Applications

Aaron Guan (Founder & CEO) Neptune Nanotechnologies Inc.

n e ptune NANO TECHNOLOGIES

Table of Contents

Waste shells converted to bio-nanocrystals

Implications and challenges for epoxy applications

Results & Discussions & Commercialization

Company Overview

- Neptune Nano was founded in 2022 in Toronto
- In house lab and development facilities
- First KG scale pilot plant of it's kind in the world
- Preoperatory technology with multiple patents filed
- Experienced team in nanomaterial development and commercialization
- Focused on packaging and epoxy industries

Neptune Nanotechnologies: Experienced Team

EXECUTIVE TEAM

INC n 🔶 ptune NANO TECHNOLOGIES

Aaron Guan Founder and CEO

- > Serial entrepreneur
- Experienced in multiple rounds of million dollar plus raises
- > Technology inventor with 7 granted patents
- > Forbes 30 Under 30
- Board director of Society of Plastic engineers (SPE TPM&F)
- ➢ Rising Star by Plastic News

Winfield Ding CFO

- ➤ CPA. CA
- CFO of Principle **Capital Partners**
- Former CFO of TSXV public company
- > Serves as advisor to several prominent VCs and PEs

Dr. Sara Koul Sr. Scientist

- > PhD in Applied Chemistry from Delhi Technological University
- Former Sr. Scientist at Dow Chemicals
- More than a decade of experience in polymer and composite formulation

Dr. Hani Naguib **R&D** Partner

- > Professor at University of Toronto
- Canada Research Chair
- Director of TIAM

Dr. Alex Chen

- Advisor Founder & CEO of ALCLE consulting
- Clean tech/deep tech business strategist

PARTNERS & ADVISORS

Dr. Sunny Leung **R&D** Partner

- Professor at York University
- > Director of M3 Labs
- > Expert in nanostructured materials

Constance Wang Advisor

- Communication and PR strategist
- Web & Social Media specialist

大成DENTONS

Matthew Diskin Legal Council

- > Partner at Dentons Law
- Expert IP attorney
- Expert corporate & litigation attorney
- Best Lawyers List Canada

Matthew Powell

IP Advisor

- Sr. Patent Agent
- Expert IP attorney
- > IAM Best Lawyer List
- n 🔶 p t u

Market Trends: Materials Industry

Better performance & better sustainability are both mega trends of the material sector

Traditional materials

High performance but environmentally damaging

Environmentally friendly but poor performance

n e ptune

Our Solution: Chitin Nanocrystal (CNW)

- Synthesized from renewable crustacean shells and fungal cell wall
 - Biobased, biodegradable, biocompatible & non-toxic
- A nano-scale single crystal 10,000X smaller than width of human hair
- > Stronger than steel & lighter than plastic
- Used as physical additive, vastly improving material properties in a wide variety of applications
- Higher performance & lower cost than competitors

Chitin Nanocrystal (CNW)

CNW nanostructure

Length (nm)	200 - 500		
Width (nm)	~20		
L : D	(10-25) : 1		
SSA (m²/g)	~300		

Pillar 1: Epoxy Applications

Pillar 1: Epoxy Applications

Wind power

Oil & Gas

Resins

Aerospace

Fiber composites

Automotive

Pain Points: 5 Fundamental Properties of Epoxy

- There are no solution on the market today that can achieve all 5 (only chitin nanocrystals can)
- Incumbent chemical additive solutions lacks strength & sustainability
- upcoming conventional nanomaterial solutions lacks cost & sustainability

Challenges

- 2 major sets of challenges that is faced by nearly all nanocomposites
- Dispersion of the nanoparticle is extremely important
- Poor dispersion leads to agglomeration •
- Agglomerated particles are ineffective ٠
- Agglomerated particles can negatively impact ٠ performance due to stress concentrations
- Interface compatibility or interface bonding also extremely important
- Incompatible surfaces cannot effectively transfer load ٠
- Fiber pull out, fiber debonding negatively impacts performance

Well dispersion fibres in biocomposite

Poor dispersion fibres in biocomposite

INC

Dispersion of Chitin Nanocrystal

- Dispersion of nanoparticles is challenging in practice
- Dry powder form nanoparticles are difficult to disperse
- Neptune seeks to solve the dispersion challenge by creating chitin nanocrystal in a resin concentrate form
- Carrier resin is from Hexion in this study
- Carrier resin can be customized to most epoxy resins
- Dispersion can be seen due to resin transparency
- Particles size < wavelength of visible light

Coatings Trends & Technologies

funct

tiffnes

esives,

ong tea

h as the

Interface Compatibility of Chitin Nanocrystal

- Chemical structure of (a) chitin nanocrystals (b) DEGBA epoxies
- The surface chemistry of chitin nanocrystals contains opportunities for both hydrogen& nitrogen bonding
- Epoxies contains epoxide rings that undergo open chain reactions with hydroxyl groups
- This enables covalent bonding between epoxides and chitin's functional groups
- Leads to intrinsic adhesion and load transfer between nanocrystal and epoxy

Coatings Trends & Technologies

Materials & Sample Preparation

Coatings Trends & Technologies

Materials:

- Hexion resin
- Westlake hardener
- Chitin nanocrystal epoxy concentrate (Commercial name TBD)

Procedure:

- Mix chitin nanocrystal concentrate with resin through simple low sheer mechanical mixing
- Crosslink with hardener under continuous low shear stirring
- Apply degassing process
- Cure in oven at 100C (212F) for 24 hours

Thermal Properties

- TGA thermal degradation testing conducted
- Onset degradation temperature is 370C for neat epoxy
- Increases to 380C with 0.25% chitin addition
- Tapers off with higher chitin loading levels of 0.5% and 0.75%
- Thermal degradation profiles do not change significantly with the addition of chitin nanocrystal

Flexural Properties

- Flexural testing conducted under ASTM D790 standards
- Remarkable increase of 2.5X in both flexural strength and modulus
- Attributed to inherent strength and stiffness of chitin nanocrystal itself
- Also attributed to good dispersion and interface compatibility with epoxy matrix
- Reduction in improvement at higher loading levels likely attributed to agglomerations

Tensile Properties

- Tensile testing conducted under ASTM D638
- Notable improvement of 20% in modulus observed at 0.25% loading level
- Minor improvement of 6% in strength observed at 0.25% loading level
- Improvements increases greatly with higher chitin nanocrystal loading levels up to 1%
- Tensile strength improved by 20%
- Tensile modulus improved by 48%

Impact Properties

- Izod impact testing conducted under ASTM D256
- Remarkable 65% improvement in impact strength observed at 0.25% chitin nanocrystal loading levels
- Well dispersed chitin nanocrystals acts as "roadblocks" along crack path
- Extending the crack length of fracture path leading to the consumption of fracture energy
- Crack bridging and arrest also observed

Crack bridging and arrest by CNWs

Performance Summary

- Higher strength, lower cost and no VOC emissions compared to chemical additives
- Significantly lower cost and zero toxicity compared to legacy nanomaterials

	Chemical Additives	Legacy Nanomaterials	CNW Nanocrystal
High Strength	X	✓	<
High Toughness	~	✓	 Image: A start of the start of
Low Cost	~	X	<
Low Weight	~	>	<
Sustainability	X	X	✓

Sampling Today! Visit our Booth

Non-toxic

Founder & CEO

Aaron Guan

+1 647-882-9890

aaron.guan@neptunenano.com 37-90 Nolan Court

> Markham, ON, Canada L3R 4L9

Acknowledgements: Our heart felt appreciation to Dr. Deepa Sigh and her Lambton College team for conducting independent mechanical testing and providing the data shown in this presentation

